9fe759f856e30f57959a8fe48cfd48fa3c1427ba
Conducted a thorough Jobs To Be Done analysis for the bakery inventory setup experience after registration and onboarding. The analysis includes: - Primary functional job and success criteria - Emotional and social jobs (confidence, control, competence) - 4-phase sub-job breakdown (Understanding → Dependencies → Operations → Verification) - Forces of progress analysis (push, pull, anxiety, habit) - 6 major barrier categories with code evidence - 10 prioritized unmet needs - Recommended solution approach: Guided Bakery Setup Journey - Success metrics (leading and lagging indicators) Key findings: - Users face discovery, cognitive load, and navigation barriers - No post-onboarding guidance (wizard ends, users are on their own) - Dependency management not enforced (can create recipes without ingredients) - Inconsistent modal patterns across different entity types - No progress tracking or completion indicators Target user: Bakery owner/employee with limited time and basic computer skills Recommended approach: Transform scattered modal-based entry into a continuous guided journey that continues from the onboarding wizard.
🍞 Bakery IA - Multi-Service Architecture
Welcome to Bakery IA, an advanced AI-powered platform for bakery management and optimization. This project implements a microservices architecture with multiple interconnected services to provide comprehensive bakery management solutions.
🚀 Quick Start
Prerequisites
- Docker Desktop with Kubernetes enabled
- Docker Compose
- Node.js (for frontend development)
Running the Application
-
Clone the repository:
git clone <repository-url> cd bakery-ia -
Set up environment variables:
cp .env.example .env # Edit .env with your specific configuration -
Run with Docker Compose:
docker-compose up --build -
Or run with Kubernetes (Docker Desktop):
# Enable Kubernetes in Docker Desktop # Run the setup script ./scripts/setup-kubernetes-dev.sh
🏗️ Architecture Overview
The project follows a microservices architecture with the following main components:
- Frontend: React-based dashboard for user interaction
- Gateway: API gateway handling authentication and routing
- Services: Multiple microservices handling different business domains
- Infrastructure: Redis, RabbitMQ, PostgreSQL databases
🐳 Kubernetes Infrastructure
🛠️ Services
The project includes multiple services:
- Auth Service: Authentication and authorization
- Tenant Service: Multi-tenancy management
- Sales Service: Sales processing
- External Service: Integration with external systems
- Training Service: AI model training
- Forecasting Service: Demand forecasting
- Notification Service: Notifications and alerts
- Inventory Service: Inventory management
- Recipes Service: Recipe management
- Suppliers Service: Supplier management
- POS Service: Point of sale
- Orders Service: Order management
- Production Service: Production planning
- Alert Processor: Background alert processing
📊 Monitoring
The system includes comprehensive monitoring with:
- Prometheus for metrics collection
- Grafana for visualization
- ELK stack for logging (planned)
🚀 Production Deployment
For production deployment on clouding.io with Kubernetes:
- Set up your clouding.io Kubernetes cluster
- Update image references to your container registry
- Configure production-specific values
- Deploy using the production kustomization:
kubectl apply -k infrastructure/kubernetes/environments/production/
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
📄 License
This project is licensed under the MIT License.
Description
Languages
Python
56.3%
TypeScript
39.6%
Shell
2.9%
CSS
0.4%
Starlark
0.3%
Other
0.3%