ddc4928d78aee3918b61b55900e666caa238196e
Implemented proper reasoning data generation for purchase orders and
production batches to enable multilingual dashboard support.
Backend Strategy:
- Generate structured JSON with type codes and parameters
- Store only reasoning_data (JSONB), not hardcoded text
- Frontend will translate using i18n libraries
Changes:
1. Created shared/schemas/reasoning_types.py
- Defined reasoning types for POs and batches
- Created helper functions for common reasoning patterns
- Supports multiple reasoning types (low_stock, forecast_demand, etc.)
2. Production Service (services/production/app/services/production_service.py)
- Generate reasoning_data when creating batches from forecast
- Include parameters: product_name, predicted_demand, current_stock, etc.
- Structure supports frontend i18n interpolation
3. Procurement Service (services/procurement/app/services/procurement_service.py)
- Implemented actual PO creation (was placeholder before!)
- Groups requirements by supplier
- Generates reasoning_data based on context (low_stock vs forecast)
- Creates PO items automatically
Example reasoning_data:
{
"type": "low_stock_detection",
"parameters": {
"supplier_name": "Harinas del Norte",
"product_names": ["Flour Type 55", "Flour Type 45"],
"days_until_stockout": 3,
"current_stock": 45.5,
"required_stock": 200
},
"consequence": {
"type": "stockout_risk",
"severity": "high",
"impact_days": 3
}
}
Frontend will translate:
- EN: "Low stock detected for Harinas del Norte. Stock runs out in 3 days."
- ES: "Stock bajo detectado para Harinas del Norte. Se agota en 3 días."
- CA: "Estoc baix detectat per Harinas del Norte. S'esgota en 3 dies."
Next steps:
- Remove TEXT fields (reasoning, consequence) from models
- Update dashboard service to use reasoning_data
- Create frontend i18n translation keys
- Update dashboard components to translate dynamically
🍞 Bakery IA - Multi-Service Architecture
Welcome to Bakery IA, an advanced AI-powered platform for bakery management and optimization. This project implements a microservices architecture with multiple interconnected services to provide comprehensive bakery management solutions.
🚀 Quick Start
Prerequisites
- Docker Desktop with Kubernetes enabled
- Docker Compose
- Node.js (for frontend development)
Running the Application
-
Clone the repository:
git clone <repository-url> cd bakery-ia -
Set up environment variables:
cp .env.example .env # Edit .env with your specific configuration -
Run with Docker Compose:
docker-compose up --build -
Or run with Kubernetes (Docker Desktop):
# Enable Kubernetes in Docker Desktop # Run the setup script ./scripts/setup-kubernetes-dev.sh
🏗️ Architecture Overview
The project follows a microservices architecture with the following main components:
- Frontend: React-based dashboard for user interaction
- Gateway: API gateway handling authentication and routing
- Services: Multiple microservices handling different business domains
- Infrastructure: Redis, RabbitMQ, PostgreSQL databases
🐳 Kubernetes Infrastructure
🛠️ Services
The project includes multiple services:
- Auth Service: Authentication and authorization
- Tenant Service: Multi-tenancy management
- Sales Service: Sales processing
- External Service: Integration with external systems
- Training Service: AI model training
- Forecasting Service: Demand forecasting
- Notification Service: Notifications and alerts
- Inventory Service: Inventory management
- Recipes Service: Recipe management
- Suppliers Service: Supplier management
- POS Service: Point of sale
- Orders Service: Order management
- Production Service: Production planning
- Alert Processor: Background alert processing
📊 Monitoring
The system includes comprehensive monitoring with:
- Prometheus for metrics collection
- Grafana for visualization
- ELK stack for logging (planned)
🚀 Production Deployment
For production deployment on clouding.io with Kubernetes:
- Set up your clouding.io Kubernetes cluster
- Update image references to your container registry
- Configure production-specific values
- Deploy using the production kustomization:
kubectl apply -k infrastructure/kubernetes/environments/production/
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
📄 License
This project is licensed under the MIT License.
Description
Languages
Python
56.3%
TypeScript
39.6%
Shell
2.9%
CSS
0.4%
Starlark
0.3%
Other
0.3%