272 lines
12 KiB
Python
272 lines
12 KiB
Python
# services/tenant/app/schemas/tenant_settings.py
|
|
"""
|
|
Tenant Settings Schemas
|
|
Pydantic models for API request/response validation
|
|
"""
|
|
|
|
from pydantic import BaseModel, Field, validator
|
|
from typing import Optional
|
|
from datetime import datetime
|
|
from uuid import UUID
|
|
|
|
|
|
# ================================================================
|
|
# SETTING CATEGORY SCHEMAS
|
|
# ================================================================
|
|
|
|
class ProcurementSettings(BaseModel):
|
|
"""Procurement and auto-approval settings"""
|
|
auto_approve_enabled: bool = True
|
|
auto_approve_threshold_eur: float = Field(500.0, ge=0, le=10000)
|
|
auto_approve_min_supplier_score: float = Field(0.80, ge=0.0, le=1.0)
|
|
require_approval_new_suppliers: bool = True
|
|
require_approval_critical_items: bool = True
|
|
procurement_lead_time_days: int = Field(3, ge=1, le=30)
|
|
demand_forecast_days: int = Field(14, ge=1, le=90)
|
|
safety_stock_percentage: float = Field(20.0, ge=0.0, le=100.0)
|
|
po_approval_reminder_hours: int = Field(24, ge=1, le=168)
|
|
po_critical_escalation_hours: int = Field(12, ge=1, le=72)
|
|
use_reorder_rules: bool = Field(True, description="Use ingredient reorder point and reorder quantity in procurement calculations")
|
|
economic_rounding: bool = Field(True, description="Round order quantities to economic multiples (reorder_quantity or supplier minimum_order_quantity)")
|
|
respect_storage_limits: bool = Field(True, description="Enforce max_stock_level constraints on orders")
|
|
use_supplier_minimums: bool = Field(True, description="Respect supplier minimum_order_quantity and minimum_order_amount")
|
|
optimize_price_tiers: bool = Field(True, description="Optimize order quantities to capture volume discount price tiers")
|
|
|
|
|
|
class InventorySettings(BaseModel):
|
|
"""Inventory management settings"""
|
|
low_stock_threshold: int = Field(10, ge=1, le=1000)
|
|
reorder_point: int = Field(20, ge=1, le=1000)
|
|
reorder_quantity: int = Field(50, ge=1, le=1000)
|
|
expiring_soon_days: int = Field(7, ge=1, le=30)
|
|
expiration_warning_days: int = Field(3, ge=1, le=14)
|
|
quality_score_threshold: float = Field(8.0, ge=0.0, le=10.0)
|
|
temperature_monitoring_enabled: bool = True
|
|
refrigeration_temp_min: float = Field(1.0, ge=-5.0, le=10.0)
|
|
refrigeration_temp_max: float = Field(4.0, ge=-5.0, le=10.0)
|
|
freezer_temp_min: float = Field(-20.0, ge=-30.0, le=0.0)
|
|
freezer_temp_max: float = Field(-15.0, ge=-30.0, le=0.0)
|
|
room_temp_min: float = Field(18.0, ge=10.0, le=35.0)
|
|
room_temp_max: float = Field(25.0, ge=10.0, le=35.0)
|
|
temp_deviation_alert_minutes: int = Field(15, ge=1, le=60)
|
|
critical_temp_deviation_minutes: int = Field(5, ge=1, le=30)
|
|
|
|
@validator('refrigeration_temp_max')
|
|
def validate_refrigeration_range(cls, v, values):
|
|
if 'refrigeration_temp_min' in values and v <= values['refrigeration_temp_min']:
|
|
raise ValueError('refrigeration_temp_max must be greater than refrigeration_temp_min')
|
|
return v
|
|
|
|
@validator('freezer_temp_max')
|
|
def validate_freezer_range(cls, v, values):
|
|
if 'freezer_temp_min' in values and v <= values['freezer_temp_min']:
|
|
raise ValueError('freezer_temp_max must be greater than freezer_temp_min')
|
|
return v
|
|
|
|
@validator('room_temp_max')
|
|
def validate_room_range(cls, v, values):
|
|
if 'room_temp_min' in values and v <= values['room_temp_min']:
|
|
raise ValueError('room_temp_max must be greater than room_temp_min')
|
|
return v
|
|
|
|
|
|
class ProductionSettings(BaseModel):
|
|
"""Production settings"""
|
|
planning_horizon_days: int = Field(7, ge=1, le=30)
|
|
minimum_batch_size: float = Field(1.0, ge=0.1, le=100.0)
|
|
maximum_batch_size: float = Field(100.0, ge=1.0, le=1000.0)
|
|
production_buffer_percentage: float = Field(10.0, ge=0.0, le=50.0)
|
|
working_hours_per_day: int = Field(12, ge=1, le=24)
|
|
max_overtime_hours: int = Field(4, ge=0, le=12)
|
|
capacity_utilization_target: float = Field(0.85, ge=0.5, le=1.0)
|
|
capacity_warning_threshold: float = Field(0.95, ge=0.7, le=1.0)
|
|
quality_check_enabled: bool = True
|
|
minimum_yield_percentage: float = Field(85.0, ge=50.0, le=100.0)
|
|
quality_score_threshold: float = Field(8.0, ge=0.0, le=10.0)
|
|
schedule_optimization_enabled: bool = True
|
|
prep_time_buffer_minutes: int = Field(30, ge=0, le=120)
|
|
cleanup_time_buffer_minutes: int = Field(15, ge=0, le=120)
|
|
labor_cost_per_hour_eur: float = Field(15.0, ge=5.0, le=100.0)
|
|
overhead_cost_percentage: float = Field(20.0, ge=0.0, le=50.0)
|
|
|
|
@validator('maximum_batch_size')
|
|
def validate_batch_size_range(cls, v, values):
|
|
if 'minimum_batch_size' in values and v <= values['minimum_batch_size']:
|
|
raise ValueError('maximum_batch_size must be greater than minimum_batch_size')
|
|
return v
|
|
|
|
@validator('capacity_warning_threshold')
|
|
def validate_capacity_threshold(cls, v, values):
|
|
if 'capacity_utilization_target' in values and v <= values['capacity_utilization_target']:
|
|
raise ValueError('capacity_warning_threshold must be greater than capacity_utilization_target')
|
|
return v
|
|
|
|
|
|
class SupplierSettings(BaseModel):
|
|
"""Supplier management settings"""
|
|
default_payment_terms_days: int = Field(30, ge=1, le=90)
|
|
default_delivery_days: int = Field(3, ge=1, le=30)
|
|
excellent_delivery_rate: float = Field(95.0, ge=90.0, le=100.0)
|
|
good_delivery_rate: float = Field(90.0, ge=80.0, le=99.0)
|
|
excellent_quality_rate: float = Field(98.0, ge=90.0, le=100.0)
|
|
good_quality_rate: float = Field(95.0, ge=80.0, le=99.0)
|
|
critical_delivery_delay_hours: int = Field(24, ge=1, le=168)
|
|
critical_quality_rejection_rate: float = Field(10.0, ge=0.0, le=50.0)
|
|
high_cost_variance_percentage: float = Field(15.0, ge=0.0, le=100.0)
|
|
|
|
@validator('good_delivery_rate')
|
|
def validate_delivery_rates(cls, v, values):
|
|
if 'excellent_delivery_rate' in values and v >= values['excellent_delivery_rate']:
|
|
raise ValueError('good_delivery_rate must be less than excellent_delivery_rate')
|
|
return v
|
|
|
|
@validator('good_quality_rate')
|
|
def validate_quality_rates(cls, v, values):
|
|
if 'excellent_quality_rate' in values and v >= values['excellent_quality_rate']:
|
|
raise ValueError('good_quality_rate must be less than excellent_quality_rate')
|
|
return v
|
|
|
|
|
|
class POSSettings(BaseModel):
|
|
"""POS integration settings"""
|
|
sync_interval_minutes: int = Field(5, ge=1, le=60)
|
|
auto_sync_products: bool = True
|
|
auto_sync_transactions: bool = True
|
|
|
|
|
|
class OrderSettings(BaseModel):
|
|
"""Order and business rules settings"""
|
|
max_discount_percentage: float = Field(50.0, ge=0.0, le=100.0)
|
|
default_delivery_window_hours: int = Field(48, ge=1, le=168)
|
|
dynamic_pricing_enabled: bool = False
|
|
discount_enabled: bool = True
|
|
delivery_tracking_enabled: bool = True
|
|
|
|
|
|
class ReplenishmentSettings(BaseModel):
|
|
"""Replenishment planning settings"""
|
|
projection_horizon_days: int = Field(7, ge=1, le=30)
|
|
service_level: float = Field(0.95, ge=0.0, le=1.0)
|
|
buffer_days: int = Field(1, ge=0, le=14)
|
|
enable_auto_replenishment: bool = True
|
|
min_order_quantity: float = Field(1.0, ge=0.1, le=1000.0)
|
|
max_order_quantity: float = Field(1000.0, ge=1.0, le=10000.0)
|
|
demand_forecast_days: int = Field(14, ge=1, le=90)
|
|
|
|
|
|
class SafetyStockSettings(BaseModel):
|
|
"""Safety stock settings"""
|
|
service_level: float = Field(0.95, ge=0.0, le=1.0)
|
|
method: str = Field("statistical", description="Method for safety stock calculation")
|
|
min_safety_stock: float = Field(0.0, ge=0.0, le=1000.0)
|
|
max_safety_stock: float = Field(100.0, ge=0.0, le=1000.0)
|
|
reorder_point_calculation: str = Field("safety_stock_plus_lead_time_demand", description="Method for reorder point calculation")
|
|
|
|
|
|
class MOQSettings(BaseModel):
|
|
"""MOQ aggregation settings"""
|
|
consolidation_window_days: int = Field(7, ge=1, le=30)
|
|
allow_early_ordering: bool = True
|
|
enable_batch_optimization: bool = True
|
|
min_batch_size: float = Field(1.0, ge=0.1, le=1000.0)
|
|
max_batch_size: float = Field(1000.0, ge=1.0, le=10000.0)
|
|
|
|
|
|
class SupplierSelectionSettings(BaseModel):
|
|
"""Supplier selection settings"""
|
|
price_weight: float = Field(0.40, ge=0.0, le=1.0)
|
|
lead_time_weight: float = Field(0.20, ge=0.0, le=1.0)
|
|
quality_weight: float = Field(0.20, ge=0.0, le=1.0)
|
|
reliability_weight: float = Field(0.20, ge=0.0, le=1.0)
|
|
diversification_threshold: int = Field(1000, ge=0, le=1000)
|
|
max_single_percentage: float = Field(0.70, ge=0.0, le=1.0)
|
|
enable_supplier_score_optimization: bool = True
|
|
|
|
@validator('price_weight', 'lead_time_weight', 'quality_weight', 'reliability_weight')
|
|
def validate_weights_sum(cls, v, values):
|
|
weights = [values.get('price_weight', 0.40), values.get('lead_time_weight', 0.20),
|
|
values.get('quality_weight', 0.20), values.get('reliability_weight', 0.20)]
|
|
total = sum(weights)
|
|
if total > 1.0:
|
|
raise ValueError('Weights must sum to 1.0 or less')
|
|
return v
|
|
|
|
|
|
class MLInsightsSettings(BaseModel):
|
|
"""ML Insights configuration settings"""
|
|
# Inventory ML (Safety Stock Optimization)
|
|
inventory_lookback_days: int = Field(90, ge=30, le=365, description="Days of demand history for safety stock analysis")
|
|
inventory_min_history_days: int = Field(30, ge=7, le=180, description="Minimum days of history required")
|
|
|
|
# Production ML (Yield Prediction)
|
|
production_lookback_days: int = Field(90, ge=30, le=365, description="Days of production history for yield analysis")
|
|
production_min_history_runs: int = Field(30, ge=10, le=100, description="Minimum production runs required")
|
|
|
|
# Procurement ML (Supplier Analysis & Price Forecasting)
|
|
supplier_analysis_lookback_days: int = Field(180, ge=30, le=730, description="Days of order history for supplier analysis")
|
|
supplier_analysis_min_orders: int = Field(10, ge=5, le=100, description="Minimum orders required for analysis")
|
|
price_forecast_lookback_days: int = Field(180, ge=90, le=730, description="Days of price history for forecasting")
|
|
price_forecast_horizon_days: int = Field(30, ge=7, le=90, description="Days to forecast ahead")
|
|
|
|
# Forecasting ML (Dynamic Rules)
|
|
rules_generation_lookback_days: int = Field(90, ge=30, le=365, description="Days of sales history for rule learning")
|
|
rules_generation_min_samples: int = Field(10, ge=5, le=100, description="Minimum samples required for rule generation")
|
|
|
|
# Global ML Settings
|
|
enable_ml_insights: bool = Field(True, description="Enable/disable ML insights generation")
|
|
ml_insights_auto_trigger: bool = Field(False, description="Automatically trigger ML insights in daily workflow")
|
|
ml_confidence_threshold: float = Field(0.80, ge=0.0, le=1.0, description="Minimum confidence threshold for ML recommendations")
|
|
|
|
|
|
# ================================================================
|
|
# REQUEST/RESPONSE SCHEMAS
|
|
# ================================================================
|
|
|
|
class TenantSettingsResponse(BaseModel):
|
|
"""Response schema for tenant settings"""
|
|
id: UUID
|
|
tenant_id: UUID
|
|
procurement_settings: ProcurementSettings
|
|
inventory_settings: InventorySettings
|
|
production_settings: ProductionSettings
|
|
supplier_settings: SupplierSettings
|
|
pos_settings: POSSettings
|
|
order_settings: OrderSettings
|
|
replenishment_settings: ReplenishmentSettings
|
|
safety_stock_settings: SafetyStockSettings
|
|
moq_settings: MOQSettings
|
|
supplier_selection_settings: SupplierSelectionSettings
|
|
ml_insights_settings: MLInsightsSettings
|
|
created_at: datetime
|
|
updated_at: datetime
|
|
|
|
class Config:
|
|
from_attributes = True
|
|
|
|
|
|
class TenantSettingsUpdate(BaseModel):
|
|
"""Schema for updating tenant settings"""
|
|
procurement_settings: Optional[ProcurementSettings] = None
|
|
inventory_settings: Optional[InventorySettings] = None
|
|
production_settings: Optional[ProductionSettings] = None
|
|
supplier_settings: Optional[SupplierSettings] = None
|
|
pos_settings: Optional[POSSettings] = None
|
|
order_settings: Optional[OrderSettings] = None
|
|
replenishment_settings: Optional[ReplenishmentSettings] = None
|
|
safety_stock_settings: Optional[SafetyStockSettings] = None
|
|
moq_settings: Optional[MOQSettings] = None
|
|
supplier_selection_settings: Optional[SupplierSelectionSettings] = None
|
|
ml_insights_settings: Optional[MLInsightsSettings] = None
|
|
|
|
|
|
class CategoryUpdateRequest(BaseModel):
|
|
"""Schema for updating a single category"""
|
|
settings: dict
|
|
|
|
|
|
class CategoryResetResponse(BaseModel):
|
|
"""Response schema for category reset"""
|
|
category: str
|
|
settings: dict
|
|
message: str
|