# services/tenant/app/schemas/tenant_settings.py """ Tenant Settings Schemas Pydantic models for API request/response validation """ from pydantic import BaseModel, Field, validator from typing import Optional from datetime import datetime from uuid import UUID # ================================================================ # SETTING CATEGORY SCHEMAS # ================================================================ class ProcurementSettings(BaseModel): """Procurement and auto-approval settings""" auto_approve_enabled: bool = True auto_approve_threshold_eur: float = Field(500.0, ge=0, le=10000) auto_approve_min_supplier_score: float = Field(0.80, ge=0.0, le=1.0) require_approval_new_suppliers: bool = True require_approval_critical_items: bool = True procurement_lead_time_days: int = Field(3, ge=1, le=30) demand_forecast_days: int = Field(14, ge=1, le=90) safety_stock_percentage: float = Field(20.0, ge=0.0, le=100.0) po_approval_reminder_hours: int = Field(24, ge=1, le=168) po_critical_escalation_hours: int = Field(12, ge=1, le=72) use_reorder_rules: bool = Field(True, description="Use ingredient reorder point and reorder quantity in procurement calculations") economic_rounding: bool = Field(True, description="Round order quantities to economic multiples (reorder_quantity or supplier minimum_order_quantity)") respect_storage_limits: bool = Field(True, description="Enforce max_stock_level constraints on orders") use_supplier_minimums: bool = Field(True, description="Respect supplier minimum_order_quantity and minimum_order_amount") optimize_price_tiers: bool = Field(True, description="Optimize order quantities to capture volume discount price tiers") class InventorySettings(BaseModel): """Inventory management settings""" low_stock_threshold: int = Field(10, ge=1, le=1000) reorder_point: int = Field(20, ge=1, le=1000) reorder_quantity: int = Field(50, ge=1, le=1000) expiring_soon_days: int = Field(7, ge=1, le=30) expiration_warning_days: int = Field(3, ge=1, le=14) quality_score_threshold: float = Field(8.0, ge=0.0, le=10.0) temperature_monitoring_enabled: bool = True refrigeration_temp_min: float = Field(1.0, ge=-5.0, le=10.0) refrigeration_temp_max: float = Field(4.0, ge=-5.0, le=10.0) freezer_temp_min: float = Field(-20.0, ge=-30.0, le=0.0) freezer_temp_max: float = Field(-15.0, ge=-30.0, le=0.0) room_temp_min: float = Field(18.0, ge=10.0, le=35.0) room_temp_max: float = Field(25.0, ge=10.0, le=35.0) temp_deviation_alert_minutes: int = Field(15, ge=1, le=60) critical_temp_deviation_minutes: int = Field(5, ge=1, le=30) @validator('refrigeration_temp_max') def validate_refrigeration_range(cls, v, values): if 'refrigeration_temp_min' in values and v <= values['refrigeration_temp_min']: raise ValueError('refrigeration_temp_max must be greater than refrigeration_temp_min') return v @validator('freezer_temp_max') def validate_freezer_range(cls, v, values): if 'freezer_temp_min' in values and v <= values['freezer_temp_min']: raise ValueError('freezer_temp_max must be greater than freezer_temp_min') return v @validator('room_temp_max') def validate_room_range(cls, v, values): if 'room_temp_min' in values and v <= values['room_temp_min']: raise ValueError('room_temp_max must be greater than room_temp_min') return v class ProductionSettings(BaseModel): """Production settings""" planning_horizon_days: int = Field(7, ge=1, le=30) minimum_batch_size: float = Field(1.0, ge=0.1, le=100.0) maximum_batch_size: float = Field(100.0, ge=1.0, le=1000.0) production_buffer_percentage: float = Field(10.0, ge=0.0, le=50.0) working_hours_per_day: int = Field(12, ge=1, le=24) max_overtime_hours: int = Field(4, ge=0, le=12) capacity_utilization_target: float = Field(0.85, ge=0.5, le=1.0) capacity_warning_threshold: float = Field(0.95, ge=0.7, le=1.0) quality_check_enabled: bool = True minimum_yield_percentage: float = Field(85.0, ge=50.0, le=100.0) quality_score_threshold: float = Field(8.0, ge=0.0, le=10.0) schedule_optimization_enabled: bool = True prep_time_buffer_minutes: int = Field(30, ge=0, le=120) cleanup_time_buffer_minutes: int = Field(15, ge=0, le=120) labor_cost_per_hour_eur: float = Field(15.0, ge=5.0, le=100.0) overhead_cost_percentage: float = Field(20.0, ge=0.0, le=50.0) @validator('maximum_batch_size') def validate_batch_size_range(cls, v, values): if 'minimum_batch_size' in values and v <= values['minimum_batch_size']: raise ValueError('maximum_batch_size must be greater than minimum_batch_size') return v @validator('capacity_warning_threshold') def validate_capacity_threshold(cls, v, values): if 'capacity_utilization_target' in values and v <= values['capacity_utilization_target']: raise ValueError('capacity_warning_threshold must be greater than capacity_utilization_target') return v class SupplierSettings(BaseModel): """Supplier management settings""" default_payment_terms_days: int = Field(30, ge=1, le=90) default_delivery_days: int = Field(3, ge=1, le=30) excellent_delivery_rate: float = Field(95.0, ge=90.0, le=100.0) good_delivery_rate: float = Field(90.0, ge=80.0, le=99.0) excellent_quality_rate: float = Field(98.0, ge=90.0, le=100.0) good_quality_rate: float = Field(95.0, ge=80.0, le=99.0) critical_delivery_delay_hours: int = Field(24, ge=1, le=168) critical_quality_rejection_rate: float = Field(10.0, ge=0.0, le=50.0) high_cost_variance_percentage: float = Field(15.0, ge=0.0, le=100.0) @validator('good_delivery_rate') def validate_delivery_rates(cls, v, values): if 'excellent_delivery_rate' in values and v >= values['excellent_delivery_rate']: raise ValueError('good_delivery_rate must be less than excellent_delivery_rate') return v @validator('good_quality_rate') def validate_quality_rates(cls, v, values): if 'excellent_quality_rate' in values and v >= values['excellent_quality_rate']: raise ValueError('good_quality_rate must be less than excellent_quality_rate') return v class POSSettings(BaseModel): """POS integration settings""" sync_interval_minutes: int = Field(5, ge=1, le=60) auto_sync_products: bool = True auto_sync_transactions: bool = True class OrderSettings(BaseModel): """Order and business rules settings""" max_discount_percentage: float = Field(50.0, ge=0.0, le=100.0) default_delivery_window_hours: int = Field(48, ge=1, le=168) dynamic_pricing_enabled: bool = False discount_enabled: bool = True delivery_tracking_enabled: bool = True class ReplenishmentSettings(BaseModel): """Replenishment planning settings""" projection_horizon_days: int = Field(7, ge=1, le=30) service_level: float = Field(0.95, ge=0.0, le=1.0) buffer_days: int = Field(1, ge=0, le=14) enable_auto_replenishment: bool = True min_order_quantity: float = Field(1.0, ge=0.1, le=1000.0) max_order_quantity: float = Field(1000.0, ge=1.0, le=10000.0) demand_forecast_days: int = Field(14, ge=1, le=90) class SafetyStockSettings(BaseModel): """Safety stock settings""" service_level: float = Field(0.95, ge=0.0, le=1.0) method: str = Field("statistical", description="Method for safety stock calculation") min_safety_stock: float = Field(0.0, ge=0.0, le=1000.0) max_safety_stock: float = Field(100.0, ge=0.0, le=1000.0) reorder_point_calculation: str = Field("safety_stock_plus_lead_time_demand", description="Method for reorder point calculation") class MOQSettings(BaseModel): """MOQ aggregation settings""" consolidation_window_days: int = Field(7, ge=1, le=30) allow_early_ordering: bool = True enable_batch_optimization: bool = True min_batch_size: float = Field(1.0, ge=0.1, le=1000.0) max_batch_size: float = Field(1000.0, ge=1.0, le=10000.0) class SupplierSelectionSettings(BaseModel): """Supplier selection settings""" price_weight: float = Field(0.40, ge=0.0, le=1.0) lead_time_weight: float = Field(0.20, ge=0.0, le=1.0) quality_weight: float = Field(0.20, ge=0.0, le=1.0) reliability_weight: float = Field(0.20, ge=0.0, le=1.0) diversification_threshold: int = Field(1000, ge=0, le=1000) max_single_percentage: float = Field(0.70, ge=0.0, le=1.0) enable_supplier_score_optimization: bool = True @validator('price_weight', 'lead_time_weight', 'quality_weight', 'reliability_weight') def validate_weights_sum(cls, v, values): weights = [values.get('price_weight', 0.40), values.get('lead_time_weight', 0.20), values.get('quality_weight', 0.20), values.get('reliability_weight', 0.20)] total = sum(weights) if total > 1.0: raise ValueError('Weights must sum to 1.0 or less') return v class MLInsightsSettings(BaseModel): """ML Insights configuration settings""" # Inventory ML (Safety Stock Optimization) inventory_lookback_days: int = Field(90, ge=30, le=365, description="Days of demand history for safety stock analysis") inventory_min_history_days: int = Field(30, ge=7, le=180, description="Minimum days of history required") # Production ML (Yield Prediction) production_lookback_days: int = Field(90, ge=30, le=365, description="Days of production history for yield analysis") production_min_history_runs: int = Field(30, ge=10, le=100, description="Minimum production runs required") # Procurement ML (Supplier Analysis & Price Forecasting) supplier_analysis_lookback_days: int = Field(180, ge=30, le=730, description="Days of order history for supplier analysis") supplier_analysis_min_orders: int = Field(10, ge=5, le=100, description="Minimum orders required for analysis") price_forecast_lookback_days: int = Field(180, ge=90, le=730, description="Days of price history for forecasting") price_forecast_horizon_days: int = Field(30, ge=7, le=90, description="Days to forecast ahead") # Forecasting ML (Dynamic Rules) rules_generation_lookback_days: int = Field(90, ge=30, le=365, description="Days of sales history for rule learning") rules_generation_min_samples: int = Field(10, ge=5, le=100, description="Minimum samples required for rule generation") # Global ML Settings enable_ml_insights: bool = Field(True, description="Enable/disable ML insights generation") ml_insights_auto_trigger: bool = Field(False, description="Automatically trigger ML insights in daily workflow") ml_confidence_threshold: float = Field(0.80, ge=0.0, le=1.0, description="Minimum confidence threshold for ML recommendations") # ================================================================ # REQUEST/RESPONSE SCHEMAS # ================================================================ class TenantSettingsResponse(BaseModel): """Response schema for tenant settings""" id: UUID tenant_id: UUID procurement_settings: ProcurementSettings inventory_settings: InventorySettings production_settings: ProductionSettings supplier_settings: SupplierSettings pos_settings: POSSettings order_settings: OrderSettings replenishment_settings: ReplenishmentSettings safety_stock_settings: SafetyStockSettings moq_settings: MOQSettings supplier_selection_settings: SupplierSelectionSettings ml_insights_settings: MLInsightsSettings created_at: datetime updated_at: datetime class Config: from_attributes = True class TenantSettingsUpdate(BaseModel): """Schema for updating tenant settings""" procurement_settings: Optional[ProcurementSettings] = None inventory_settings: Optional[InventorySettings] = None production_settings: Optional[ProductionSettings] = None supplier_settings: Optional[SupplierSettings] = None pos_settings: Optional[POSSettings] = None order_settings: Optional[OrderSettings] = None replenishment_settings: Optional[ReplenishmentSettings] = None safety_stock_settings: Optional[SafetyStockSettings] = None moq_settings: Optional[MOQSettings] = None supplier_selection_settings: Optional[SupplierSelectionSettings] = None ml_insights_settings: Optional[MLInsightsSettings] = None class CategoryUpdateRequest(BaseModel): """Schema for updating a single category""" settings: dict class CategoryResetResponse(BaseModel): """Response schema for category reset""" category: str settings: dict message: str