232ef80a6eadbb5aa765269030390a6c3ee35365
The previous logic required batches to both START and END within the date range, which excluded batches that start today but end later. Now correctly filters batches based on their planned_start_time only, so today's batches include all batches scheduled to start today regardless of their end time. Fixes bug where PENDING batches with today's start date were not appearing in the dashboard production timeline.
🍞 Bakery IA - Multi-Service Architecture
Welcome to Bakery IA, an advanced AI-powered platform for bakery management and optimization. This project implements a microservices architecture with multiple interconnected services to provide comprehensive bakery management solutions.
🚀 Quick Start
Prerequisites
- Docker Desktop with Kubernetes enabled
- Docker Compose
- Node.js (for frontend development)
Running the Application
-
Clone the repository:
git clone <repository-url> cd bakery-ia -
Set up environment variables:
cp .env.example .env # Edit .env with your specific configuration -
Run with Docker Compose:
docker-compose up --build -
Or run with Kubernetes (Docker Desktop):
# Enable Kubernetes in Docker Desktop # Run the setup script ./scripts/setup-kubernetes-dev.sh
🏗️ Architecture Overview
The project follows a microservices architecture with the following main components:
- Frontend: React-based dashboard for user interaction
- Gateway: API gateway handling authentication and routing
- Services: Multiple microservices handling different business domains
- Infrastructure: Redis, RabbitMQ, PostgreSQL databases
🐳 Kubernetes Infrastructure
🛠️ Services
The project includes multiple services:
- Auth Service: Authentication and authorization
- Tenant Service: Multi-tenancy management
- Sales Service: Sales processing
- External Service: Integration with external systems
- Training Service: AI model training
- Forecasting Service: Demand forecasting
- Notification Service: Notifications and alerts
- Inventory Service: Inventory management
- Recipes Service: Recipe management
- Suppliers Service: Supplier management
- POS Service: Point of sale
- Orders Service: Order management
- Production Service: Production planning
- Alert Processor: Background alert processing
📊 Monitoring
The system includes comprehensive monitoring with:
- Prometheus for metrics collection
- Grafana for visualization
- ELK stack for logging (planned)
🚀 Production Deployment
For production deployment on clouding.io with Kubernetes:
- Set up your clouding.io Kubernetes cluster
- Update image references to your container registry
- Configure production-specific values
- Deploy using the production kustomization:
kubectl apply -k infrastructure/kubernetes/environments/production/
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
📄 License
This project is licensed under the MIT License.
Description
Languages
Python
56.3%
TypeScript
39.6%
Shell
2.9%
CSS
0.4%
Starlark
0.3%
Other
0.3%