Fix new services implementation 1
This commit is contained in:
@@ -56,6 +56,28 @@ export interface BusinessModelAnalysis {
|
||||
recommendations: string[];
|
||||
}
|
||||
|
||||
// Step 1: File validation result
|
||||
export interface FileValidationResult {
|
||||
is_valid: boolean;
|
||||
total_records: number;
|
||||
unique_products: number;
|
||||
product_list: string[];
|
||||
validation_errors: any[];
|
||||
validation_warnings: any[];
|
||||
summary: Record<string, any>;
|
||||
}
|
||||
|
||||
// Step 2: AI suggestions result
|
||||
export interface ProductSuggestionsResult {
|
||||
suggestions: InventorySuggestion[];
|
||||
business_model_analysis: BusinessModelAnalysis;
|
||||
total_products: number;
|
||||
high_confidence_count: number;
|
||||
low_confidence_count: number;
|
||||
processing_time_seconds: number;
|
||||
}
|
||||
|
||||
// Legacy support - will be deprecated
|
||||
export interface OnboardingAnalysisResult {
|
||||
total_products_found: number;
|
||||
inventory_suggestions: InventorySuggestion[];
|
||||
@@ -143,16 +165,16 @@ export class OnboardingService {
|
||||
return apiClient.get(`${this.baseEndpoint}/can-access/${stepName}`);
|
||||
}
|
||||
|
||||
// ========== AUTOMATED INVENTORY CREATION METHODS ==========
|
||||
// ========== NEW 4-STEP AUTOMATED INVENTORY CREATION METHODS ==========
|
||||
|
||||
/**
|
||||
* Phase 1: Analyze sales data and get AI suggestions
|
||||
* Step 1: Validate file and extract unique products
|
||||
*/
|
||||
async analyzeSalesDataForOnboarding(tenantId: string, file: File): Promise<OnboardingAnalysisResult> {
|
||||
async validateFileAndExtractProducts(tenantId: string, file: File): Promise<FileValidationResult> {
|
||||
const formData = new FormData();
|
||||
formData.append('file', file);
|
||||
|
||||
return apiClient.post(`/tenants/${tenantId}/onboarding/analyze`, formData, {
|
||||
return apiClient.post(`/tenants/${tenantId}/onboarding/validate-file`, formData, {
|
||||
headers: {
|
||||
'Content-Type': 'multipart/form-data',
|
||||
},
|
||||
@@ -160,7 +182,26 @@ export class OnboardingService {
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 2: Create inventory from approved suggestions
|
||||
* Step 2: Generate AI-powered inventory suggestions
|
||||
*/
|
||||
async generateInventorySuggestions(
|
||||
tenantId: string,
|
||||
file: File,
|
||||
productList: string[]
|
||||
): Promise<ProductSuggestionsResult> {
|
||||
const formData = new FormData();
|
||||
formData.append('file', file);
|
||||
formData.append('product_list', JSON.stringify(productList));
|
||||
|
||||
return apiClient.post(`/tenants/${tenantId}/onboarding/generate-suggestions`, formData, {
|
||||
headers: {
|
||||
'Content-Type': 'multipart/form-data',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Step 3: Create inventory from approved suggestions
|
||||
*/
|
||||
async createInventoryFromSuggestions(
|
||||
tenantId: string,
|
||||
@@ -176,7 +217,7 @@ export class OnboardingService {
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 3: Import sales data with inventory mapping
|
||||
* Step 4: Final sales data import with inventory mapping
|
||||
*/
|
||||
async importSalesWithInventory(
|
||||
tenantId: string,
|
||||
@@ -194,6 +235,35 @@ export class OnboardingService {
|
||||
});
|
||||
}
|
||||
|
||||
// ========== LEGACY METHODS (for backward compatibility) ==========
|
||||
|
||||
/**
|
||||
* @deprecated Use the new 4-step flow instead
|
||||
* Phase 1: Analyze sales data and get AI suggestions (OLD METHOD)
|
||||
*/
|
||||
async analyzeSalesDataForOnboarding(tenantId: string, file: File): Promise<OnboardingAnalysisResult> {
|
||||
// This method will use the new flow under the hood for backward compatibility
|
||||
const validationResult = await this.validateFileAndExtractProducts(tenantId, file);
|
||||
|
||||
if (!validationResult.is_valid) {
|
||||
throw new Error(`File validation failed: ${validationResult.validation_errors.map(e => e.message || e).join(', ')}`);
|
||||
}
|
||||
|
||||
const suggestionsResult = await this.generateInventorySuggestions(tenantId, file, validationResult.product_list);
|
||||
|
||||
// Convert to legacy format
|
||||
return {
|
||||
total_products_found: suggestionsResult.total_products,
|
||||
inventory_suggestions: suggestionsResult.suggestions,
|
||||
business_model_analysis: suggestionsResult.business_model_analysis,
|
||||
import_job_id: `legacy-${Date.now()}`,
|
||||
status: 'completed',
|
||||
processed_rows: validationResult.total_records,
|
||||
errors: validationResult.validation_errors.map(e => e.message || String(e)),
|
||||
warnings: validationResult.validation_warnings.map(w => w.message || String(w))
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Get business model guidance based on analysis
|
||||
*/
|
||||
|
||||
@@ -21,6 +21,8 @@ import {
|
||||
import toast from 'react-hot-toast';
|
||||
|
||||
import {
|
||||
FileValidationResult,
|
||||
ProductSuggestionsResult,
|
||||
OnboardingAnalysisResult,
|
||||
InventorySuggestion,
|
||||
BusinessModelAnalysis,
|
||||
@@ -35,12 +37,13 @@ interface SmartHistoricalDataImportProps {
|
||||
onBack?: () => void;
|
||||
}
|
||||
|
||||
type ImportPhase = 'upload' | 'analysis' | 'review' | 'creation' | 'import' | 'complete';
|
||||
type ImportPhase = 'upload' | 'validation' | 'suggestions' | 'review' | 'creation' | 'import' | 'complete';
|
||||
|
||||
interface PhaseState {
|
||||
phase: ImportPhase;
|
||||
file?: File;
|
||||
analysisResult?: OnboardingAnalysisResult;
|
||||
validationResult?: FileValidationResult;
|
||||
suggestionsResult?: ProductSuggestionsResult;
|
||||
reviewedSuggestions?: InventorySuggestion[];
|
||||
creationResult?: InventoryCreationResult;
|
||||
importResult?: SalesImportResult;
|
||||
@@ -57,22 +60,56 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
const [showAllSuggestions, setShowAllSuggestions] = useState(false);
|
||||
|
||||
const handleFileUpload = useCallback(async (file: File) => {
|
||||
setState(prev => ({ ...prev, file, phase: 'analysis' }));
|
||||
setState(prev => ({ ...prev, file, phase: 'validation' }));
|
||||
setIsProcessing(true);
|
||||
|
||||
try {
|
||||
toast.loading('🧠 Analizando tu archivo con IA...', { id: 'analysis' });
|
||||
// Step 1: Validate file and extract products
|
||||
toast.loading('📋 Validando archivo...', { id: 'validation' });
|
||||
|
||||
const analysisResult = await onboardingService.analyzeSalesDataForOnboarding(tenantId, file);
|
||||
const validationResult = await onboardingService.validateFileAndExtractProducts(tenantId, file);
|
||||
|
||||
toast.success(`¡Análisis completado! ${analysisResult.total_products_found} productos encontrados`, {
|
||||
id: 'analysis'
|
||||
if (!validationResult.is_valid) {
|
||||
throw new Error(`Archivo inválido: ${validationResult.validation_errors.map(e => e.message || e).join(', ')}`);
|
||||
}
|
||||
|
||||
toast.success(`¡Archivo válido! ${validationResult.unique_products} productos únicos encontrados`, {
|
||||
id: 'validation'
|
||||
});
|
||||
|
||||
setState(prev => ({ ...prev, validationResult, phase: 'suggestions' }));
|
||||
|
||||
// Step 2: Generate AI suggestions
|
||||
setTimeout(() => handleGenerateSuggestions(file, validationResult.product_list), 1000);
|
||||
|
||||
} catch (error: any) {
|
||||
toast.error('Error al validar el archivo', { id: 'validation' });
|
||||
setState(prev => ({
|
||||
...prev,
|
||||
error: error.message || 'Error de validación',
|
||||
phase: 'upload'
|
||||
}));
|
||||
} finally {
|
||||
setIsProcessing(false);
|
||||
}
|
||||
}, [tenantId]);
|
||||
|
||||
const handleGenerateSuggestions = useCallback(async (file: File, productList: string[]) => {
|
||||
setIsProcessing(true);
|
||||
|
||||
try {
|
||||
toast.loading('🧠 Generando sugerencias con IA...', { id: 'suggestions' });
|
||||
|
||||
const suggestionsResult = await onboardingService.generateInventorySuggestions(tenantId, file, productList);
|
||||
|
||||
toast.success(`¡${suggestionsResult.total_products} productos clasificados! ${suggestionsResult.high_confidence_count} con alta confianza`, {
|
||||
id: 'suggestions'
|
||||
});
|
||||
|
||||
setState(prev => ({
|
||||
...prev,
|
||||
analysisResult,
|
||||
reviewedSuggestions: analysisResult.inventory_suggestions.map(s => ({
|
||||
suggestionsResult,
|
||||
reviewedSuggestions: suggestionsResult.suggestions.map(s => ({
|
||||
...s,
|
||||
user_approved: s.confidence_score >= 0.7
|
||||
})),
|
||||
@@ -80,11 +117,11 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
}));
|
||||
|
||||
} catch (error: any) {
|
||||
toast.error('Error al analizar el archivo', { id: 'analysis' });
|
||||
toast.error('Error al generar sugerencias', { id: 'suggestions' });
|
||||
setState(prev => ({
|
||||
...prev,
|
||||
error: error.message || 'Error desconocido',
|
||||
phase: 'upload'
|
||||
error: error.message || 'Error en sugerencias de IA',
|
||||
phase: 'validation'
|
||||
}));
|
||||
} finally {
|
||||
setIsProcessing(false);
|
||||
@@ -475,17 +512,17 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
</div>
|
||||
);
|
||||
|
||||
case 'analysis':
|
||||
case 'validation':
|
||||
return (
|
||||
<div className="text-center py-12">
|
||||
<div className="w-20 h-20 bg-gradient-to-r from-blue-500 to-purple-500 rounded-full flex items-center justify-center mx-auto mb-6 animate-pulse">
|
||||
<Brain className="w-10 h-10 text-white" />
|
||||
<div className="w-20 h-20 bg-gradient-to-r from-blue-500 to-green-500 rounded-full flex items-center justify-center mx-auto mb-6 animate-pulse">
|
||||
<CheckCircle2 className="w-10 h-10 text-white" />
|
||||
</div>
|
||||
<h2 className="text-xl font-semibold text-gray-900 mb-3">
|
||||
🧠 Analizando tu archivo con IA...
|
||||
📋 Validando archivo...
|
||||
</h2>
|
||||
<p className="text-gray-600 mb-6">
|
||||
Esto puede tomar unos momentos mientras clasificamos tus productos
|
||||
Verificando formato y extrayendo productos únicos
|
||||
</p>
|
||||
<div className="bg-white rounded-lg shadow-sm p-4 max-w-md mx-auto">
|
||||
<div className="flex items-center justify-between text-sm text-gray-600">
|
||||
@@ -493,16 +530,48 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
<span className="font-medium">{state.file?.name}</span>
|
||||
</div>
|
||||
<div className="mt-2 bg-gray-200 rounded-full h-2">
|
||||
<div className="bg-gradient-to-r from-blue-500 to-purple-500 h-2 rounded-full w-1/2 animate-pulse"></div>
|
||||
<div className="bg-gradient-to-r from-blue-500 to-green-500 h-2 rounded-full w-1/3 animate-pulse"></div>
|
||||
</div>
|
||||
<div className="mt-2 text-xs text-gray-500">Paso 1 de 4: Validación</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
|
||||
case 'suggestions':
|
||||
return (
|
||||
<div className="text-center py-12">
|
||||
<div className="w-20 h-20 bg-gradient-to-r from-purple-500 to-pink-500 rounded-full flex items-center justify-center mx-auto mb-6 animate-pulse">
|
||||
<Brain className="w-10 h-10 text-white" />
|
||||
</div>
|
||||
<h2 className="text-xl font-semibold text-gray-900 mb-3">
|
||||
🧠 Generando sugerencias con IA...
|
||||
</h2>
|
||||
<p className="text-gray-600 mb-6">
|
||||
Clasificando productos y analizando tu modelo de negocio
|
||||
</p>
|
||||
<div className="bg-white rounded-lg shadow-sm p-4 max-w-md mx-auto">
|
||||
{state.validationResult && (
|
||||
<div className="mb-4">
|
||||
<div className="flex items-center justify-center space-x-2 text-green-600 mb-2">
|
||||
<CheckCircle2 className="w-4 h-4" />
|
||||
<span className="text-sm font-medium">
|
||||
{state.validationResult.unique_products} productos únicos encontrados
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
<div className="bg-gray-200 rounded-full h-2">
|
||||
<div className="bg-gradient-to-r from-purple-500 to-pink-500 h-2 rounded-full w-2/3 animate-pulse"></div>
|
||||
</div>
|
||||
<div className="mt-2 text-xs text-gray-500">Paso 2 de 4: Clasificación IA</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
|
||||
case 'review':
|
||||
if (!state.analysisResult) return null;
|
||||
if (!state.suggestionsResult) return null;
|
||||
|
||||
const { analysisResult, reviewedSuggestions } = state;
|
||||
const { suggestionsResult, reviewedSuggestions } = state;
|
||||
const approvedCount = reviewedSuggestions?.filter(s => s.user_approved).length || 0;
|
||||
const highConfidenceCount = reviewedSuggestions?.filter(s => s.confidence_score >= 0.7).length || 0;
|
||||
const visibleSuggestions = showAllSuggestions
|
||||
@@ -519,12 +588,15 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
¡Análisis Completado! 🎉
|
||||
</h2>
|
||||
<p className="text-gray-600">
|
||||
Hemos encontrado <strong>{analysisResult.total_products_found} productos</strong> y
|
||||
Hemos encontrado <strong>{suggestionsResult.total_products} productos</strong> y
|
||||
sugerimos <strong>{approvedCount} para tu inventario</strong>
|
||||
</p>
|
||||
<div className="mt-2 text-sm text-gray-500">
|
||||
⚡ Procesado en {suggestionsResult.processing_time_seconds.toFixed(1)}s
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{renderBusinessModelInsight(analysisResult.business_model_analysis)}
|
||||
{renderBusinessModelInsight(suggestionsResult.business_model_analysis)}
|
||||
|
||||
<div className="bg-white border rounded-xl p-6">
|
||||
<div className="flex items-center justify-between mb-4">
|
||||
@@ -579,15 +651,15 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
{visibleSuggestions?.map(renderSuggestionCard)}
|
||||
</div>
|
||||
|
||||
{analysisResult.warnings.length > 0 && (
|
||||
{state.validationResult?.validation_warnings && state.validationResult.validation_warnings.length > 0 && (
|
||||
<div className="bg-amber-50 border border-amber-200 rounded-lg p-4 mb-4">
|
||||
<div className="flex">
|
||||
<AlertTriangle className="h-5 w-5 text-amber-400" />
|
||||
<div className="ml-3">
|
||||
<h4 className="text-sm font-medium text-amber-800">Advertencias</h4>
|
||||
<h4 className="text-sm font-medium text-amber-800">Advertencias de Validación</h4>
|
||||
<ul className="mt-2 text-sm text-amber-700 space-y-1">
|
||||
{analysisResult.warnings.map((warning, idx) => (
|
||||
<li key={idx}>• {warning}</li>
|
||||
{state.validationResult.validation_warnings.map((warning, idx) => (
|
||||
<li key={idx}>• {warning.message || warning}</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
@@ -630,6 +702,9 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
case 'creation':
|
||||
case 'import':
|
||||
const isCreating = state.phase === 'creation';
|
||||
const stepNumber = isCreating ? 3 : 4;
|
||||
const stepProgress = isCreating ? 75 : 90;
|
||||
|
||||
return (
|
||||
<div className="text-center py-12">
|
||||
<div className="w-20 h-20 bg-gradient-to-r from-green-400 to-blue-500 rounded-full flex items-center justify-center mx-auto mb-6 animate-pulse">
|
||||
@@ -662,11 +737,17 @@ const SmartHistoricalDataImport: React.FC<SmartHistoricalDataImportProps> = ({
|
||||
)}
|
||||
|
||||
<div className="bg-gray-200 rounded-full h-3">
|
||||
<div className="bg-gradient-to-r from-green-400 to-blue-500 h-3 rounded-full w-3/4 animate-pulse"></div>
|
||||
<div
|
||||
className="bg-gradient-to-r from-green-400 to-blue-500 h-3 rounded-full animate-pulse transition-all duration-500"
|
||||
style={{ width: `${stepProgress}%` }}
|
||||
/>
|
||||
</div>
|
||||
<div className="flex justify-between items-center mt-2">
|
||||
<p className="text-sm text-gray-500">
|
||||
{isCreating ? 'Creando inventario...' : 'Procesando importación final...'}
|
||||
</p>
|
||||
<span className="text-xs text-gray-400">Paso {stepNumber} de 4</span>
|
||||
</div>
|
||||
<p className="text-sm text-gray-500 mt-2">
|
||||
{isCreating ? 'Creando inventario...' : 'Procesando importación final...'}
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
|
||||
@@ -5,7 +5,7 @@ import {
|
||||
Filter,
|
||||
Download,
|
||||
Upload,
|
||||
Grid3X3,
|
||||
LayoutGrid,
|
||||
List,
|
||||
Package,
|
||||
TrendingDown,
|
||||
@@ -143,6 +143,14 @@ const InventoryPage: React.FC = () => {
|
||||
console.log('View details:', item);
|
||||
};
|
||||
|
||||
// Handle view item by ID (for alerts)
|
||||
const handleViewItemById = (itemId: string) => {
|
||||
const item = items.find(item => item.id === itemId);
|
||||
if (item) {
|
||||
handleItemViewDetails(item);
|
||||
}
|
||||
};
|
||||
|
||||
// Handle alert acknowledgment
|
||||
const handleAcknowledgeAlert = async (alertId: string) => {
|
||||
await acknowledgeAlert(alertId);
|
||||
@@ -302,7 +310,7 @@ const InventoryPage: React.FC = () => {
|
||||
: 'bg-white text-gray-600 hover:bg-gray-50'
|
||||
}`}
|
||||
>
|
||||
<Grid3X3 className="w-4 h-4" />
|
||||
<LayoutGrid className="w-4 h-4" />
|
||||
</button>
|
||||
<button
|
||||
onClick={() => setViewMode('list')}
|
||||
@@ -529,7 +537,7 @@ const InventoryPage: React.FC = () => {
|
||||
alerts={alerts}
|
||||
onAcknowledge={handleAcknowledgeAlert}
|
||||
onAcknowledgeAll={handleBulkAcknowledgeAlerts}
|
||||
onViewItem={handleItemViewDetails}
|
||||
onViewItem={handleViewItemById}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
|
||||
@@ -4,7 +4,7 @@ import {
|
||||
Search,
|
||||
Plus,
|
||||
Filter,
|
||||
Grid3X3,
|
||||
LayoutGrid,
|
||||
List,
|
||||
ChefHat,
|
||||
TrendingUp,
|
||||
@@ -304,7 +304,7 @@ const RecipesPage: React.FC = () => {
|
||||
: 'bg-white text-gray-600 hover:bg-gray-50'
|
||||
}`}
|
||||
>
|
||||
<Grid3X3 className="w-4 h-4" />
|
||||
<LayoutGrid className="w-4 h-4" />
|
||||
</button>
|
||||
<button
|
||||
onClick={() => setViewMode('list')}
|
||||
|
||||
@@ -17,7 +17,7 @@ from app.core.service_discovery import ServiceDiscovery
|
||||
from app.middleware.auth import AuthMiddleware
|
||||
from app.middleware.logging import LoggingMiddleware
|
||||
from app.middleware.rate_limit import RateLimitMiddleware
|
||||
from app.routes import auth, tenant, notification, nominatim, user
|
||||
from app.routes import auth, tenant, notification, nominatim, user, inventory
|
||||
from shared.monitoring.logging import setup_logging
|
||||
from shared.monitoring.metrics import MetricsCollector
|
||||
|
||||
@@ -60,6 +60,7 @@ app.include_router(user.router, prefix="/api/v1/users", tags=["users"])
|
||||
app.include_router(tenant.router, prefix="/api/v1/tenants", tags=["tenants"])
|
||||
app.include_router(notification.router, prefix="/api/v1/notifications", tags=["notifications"])
|
||||
app.include_router(nominatim.router, prefix="/api/v1/nominatim", tags=["location"])
|
||||
app.include_router(inventory.router, prefix="/api/v1/inventory", tags=["inventory"])
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
|
||||
216
gateway/app/routes/inventory.py
Normal file
216
gateway/app/routes/inventory.py
Normal file
@@ -0,0 +1,216 @@
|
||||
# gateway/app/routes/inventory.py
|
||||
"""
|
||||
Inventory routes for API Gateway - Handles inventory management endpoints
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Request, Response, HTTPException, Path
|
||||
from fastapi.responses import JSONResponse
|
||||
import httpx
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from app.core.config import settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
# Inventory service URL - add to settings
|
||||
INVENTORY_SERVICE_URL = "http://inventory-service:8000"
|
||||
|
||||
# ================================================================
|
||||
# TENANT-SCOPED INVENTORY ENDPOINTS
|
||||
# ================================================================
|
||||
|
||||
@router.api_route("/{tenant_id}/inventory/ingredients{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_tenant_ingredients(request: Request, tenant_id: str = Path(...), path: str = ""):
|
||||
"""Proxy tenant ingredient requests to inventory service"""
|
||||
base_path = f"/api/v1/ingredients"
|
||||
|
||||
# If path is empty or just "/", use base path
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
# Ensure path starts with "/"
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
@router.api_route("/{tenant_id}/inventory/stock{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_tenant_stock(request: Request, tenant_id: str = Path(...), path: str = ""):
|
||||
"""Proxy tenant stock requests to inventory service"""
|
||||
base_path = f"/api/v1/stock"
|
||||
|
||||
# If path is empty or just "/", use base path
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
# Ensure path starts with "/"
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
@router.api_route("/{tenant_id}/inventory/alerts{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_tenant_alerts(request: Request, tenant_id: str = Path(...), path: str = ""):
|
||||
"""Proxy tenant inventory alert requests to inventory service"""
|
||||
base_path = f"/api/v1/alerts"
|
||||
|
||||
# If path is empty or just "/", use base path
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
# Ensure path starts with "/"
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
@router.api_route("/{tenant_id}/inventory/dashboard{path:path}", methods=["GET", "OPTIONS"])
|
||||
async def proxy_tenant_inventory_dashboard(request: Request, tenant_id: str = Path(...), path: str = ""):
|
||||
"""Proxy tenant inventory dashboard requests to inventory service"""
|
||||
base_path = f"/api/v1/dashboard"
|
||||
|
||||
# If path is empty or just "/", use base path
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
# Ensure path starts with "/"
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
# ================================================================
|
||||
# DIRECT INVENTORY ENDPOINTS (for backward compatibility)
|
||||
# ================================================================
|
||||
|
||||
@router.api_route("/ingredients{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_ingredients(request: Request, path: str = ""):
|
||||
"""Proxy ingredient requests to inventory service"""
|
||||
base_path = f"/api/v1/ingredients"
|
||||
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
@router.api_route("/stock{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_stock(request: Request, path: str = ""):
|
||||
"""Proxy stock requests to inventory service"""
|
||||
base_path = f"/api/v1/stock"
|
||||
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
@router.api_route("/alerts{path:path}", methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"])
|
||||
async def proxy_alerts(request: Request, path: str = ""):
|
||||
"""Proxy inventory alert requests to inventory service"""
|
||||
base_path = f"/api/v1/alerts"
|
||||
|
||||
if not path or path == "/" or path == "":
|
||||
target_path = base_path
|
||||
else:
|
||||
if not path.startswith("/"):
|
||||
path = "/" + path
|
||||
target_path = base_path + path
|
||||
|
||||
return await _proxy_to_inventory_service(request, target_path)
|
||||
|
||||
# ================================================================
|
||||
# PROXY HELPER FUNCTION
|
||||
# ================================================================
|
||||
|
||||
async def _proxy_to_inventory_service(request: Request, target_path: str):
|
||||
"""Proxy request to inventory service with enhanced error handling"""
|
||||
|
||||
# Handle OPTIONS requests directly for CORS
|
||||
if request.method == "OPTIONS":
|
||||
return Response(
|
||||
status_code=200,
|
||||
headers={
|
||||
"Access-Control-Allow-Origin": "*",
|
||||
"Access-Control-Allow-Methods": "GET, POST, PUT, DELETE, OPTIONS",
|
||||
"Access-Control-Allow-Headers": "Content-Type, Authorization, X-Tenant-ID",
|
||||
"Access-Control-Allow-Credentials": "true",
|
||||
"Access-Control-Max-Age": "86400"
|
||||
}
|
||||
)
|
||||
|
||||
try:
|
||||
url = f"{INVENTORY_SERVICE_URL}{target_path}"
|
||||
|
||||
# Forward headers and add user/tenant context
|
||||
headers = dict(request.headers)
|
||||
headers.pop("host", None)
|
||||
|
||||
# Get request body if present
|
||||
body = None
|
||||
if request.method in ["POST", "PUT", "PATCH"]:
|
||||
body = await request.body()
|
||||
|
||||
# Add query parameters
|
||||
params = dict(request.query_params)
|
||||
|
||||
timeout_config = httpx.Timeout(
|
||||
connect=30.0, # Connection timeout
|
||||
read=600.0, # Read timeout: 10 minutes
|
||||
write=30.0, # Write timeout
|
||||
pool=30.0 # Pool timeout
|
||||
)
|
||||
|
||||
async with httpx.AsyncClient(timeout=timeout_config) as client:
|
||||
response = await client.request(
|
||||
method=request.method,
|
||||
url=url,
|
||||
headers=headers,
|
||||
content=body,
|
||||
params=params
|
||||
)
|
||||
|
||||
# Handle different response types
|
||||
if response.headers.get("content-type", "").startswith("application/json"):
|
||||
try:
|
||||
content = response.json()
|
||||
except:
|
||||
content = {"message": "Invalid JSON response from inventory service"}
|
||||
else:
|
||||
content = response.text
|
||||
|
||||
return JSONResponse(
|
||||
status_code=response.status_code,
|
||||
content=content
|
||||
)
|
||||
|
||||
except httpx.ConnectTimeout:
|
||||
logger.error(f"Connection timeout to inventory service: {INVENTORY_SERVICE_URL}{target_path}")
|
||||
raise HTTPException(
|
||||
status_code=503,
|
||||
detail="Inventory service temporarily unavailable"
|
||||
)
|
||||
except httpx.ReadTimeout:
|
||||
logger.error(f"Read timeout from inventory service: {INVENTORY_SERVICE_URL}{target_path}")
|
||||
raise HTTPException(
|
||||
status_code=504,
|
||||
detail="Inventory service response timeout"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error proxying to inventory service {INVENTORY_SERVICE_URL}{target_path}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail="Internal gateway error"
|
||||
)
|
||||
@@ -3,40 +3,27 @@
|
||||
Client for communicating with Inventory Service
|
||||
"""
|
||||
|
||||
import httpx
|
||||
import logging
|
||||
from typing import List, Optional, Dict, Any
|
||||
from uuid import UUID
|
||||
|
||||
from shared.clients.inventory_client import InventoryServiceClient as SharedInventoryClient
|
||||
from ..core.config import settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InventoryClient:
|
||||
"""Client for inventory service communication"""
|
||||
"""Client for inventory service communication via shared client"""
|
||||
|
||||
def __init__(self):
|
||||
self.base_url = settings.INVENTORY_SERVICE_URL
|
||||
self.timeout = 30.0
|
||||
self._shared_client = SharedInventoryClient(settings)
|
||||
|
||||
async def get_ingredient_by_id(self, tenant_id: UUID, ingredient_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Get ingredient details from inventory service"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/ingredients/{ingredient_id}",
|
||||
headers={"X-Tenant-ID": str(tenant_id)}
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
elif response.status_code == 404:
|
||||
return None
|
||||
else:
|
||||
logger.error(f"Failed to get ingredient {ingredient_id}: {response.status_code}")
|
||||
return None
|
||||
|
||||
result = await self._shared_client.get_ingredient_by_id(ingredient_id, str(tenant_id))
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting ingredient {ingredient_id}: {e}")
|
||||
return None
|
||||
@@ -44,19 +31,13 @@ class InventoryClient:
|
||||
async def get_ingredients_by_ids(self, tenant_id: UUID, ingredient_ids: List[UUID]) -> List[Dict[str, Any]]:
|
||||
"""Get multiple ingredients by IDs"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/api/v1/ingredients/batch",
|
||||
headers={"X-Tenant-ID": str(tenant_id)},
|
||||
json={"ingredient_ids": [str(id) for id in ingredient_ids]}
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
logger.error(f"Failed to get ingredients batch: {response.status_code}")
|
||||
return []
|
||||
|
||||
# For now, get ingredients individually - could be optimized with batch endpoint
|
||||
results = []
|
||||
for ingredient_id in ingredient_ids:
|
||||
ingredient = await self._shared_client.get_ingredient_by_id(ingredient_id, str(tenant_id))
|
||||
if ingredient:
|
||||
results.append(ingredient)
|
||||
return results
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting ingredients batch: {e}")
|
||||
return []
|
||||
@@ -64,20 +45,16 @@ class InventoryClient:
|
||||
async def get_ingredient_stock_level(self, tenant_id: UUID, ingredient_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Get current stock level for ingredient"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/stock/ingredient/{ingredient_id}",
|
||||
headers={"X-Tenant-ID": str(tenant_id)}
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
elif response.status_code == 404:
|
||||
return None
|
||||
else:
|
||||
logger.error(f"Failed to get stock level for {ingredient_id}: {response.status_code}")
|
||||
return None
|
||||
|
||||
stock_entries = await self._shared_client.get_ingredient_stock(ingredient_id, str(tenant_id))
|
||||
if stock_entries:
|
||||
# Calculate total available stock from all entries
|
||||
total_stock = sum(entry.get('available_quantity', 0) for entry in stock_entries)
|
||||
return {
|
||||
'ingredient_id': str(ingredient_id),
|
||||
'total_available': total_stock,
|
||||
'stock_entries': stock_entries
|
||||
}
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting stock level for {ingredient_id}: {e}")
|
||||
return None
|
||||
@@ -114,23 +91,19 @@ class InventoryClient:
|
||||
) -> Dict[str, Any]:
|
||||
"""Record ingredient consumption for production"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/api/v1/stock/consume",
|
||||
headers={"X-Tenant-ID": str(tenant_id)},
|
||||
json={
|
||||
"consumptions": consumptions,
|
||||
"reference_number": str(production_batch_id),
|
||||
"movement_type": "production_use"
|
||||
}
|
||||
)
|
||||
consumption_data = {
|
||||
"consumptions": consumptions,
|
||||
"reference_number": str(production_batch_id),
|
||||
"movement_type": "production_use"
|
||||
}
|
||||
|
||||
result = await self._shared_client.consume_stock(consumption_data, str(tenant_id))
|
||||
|
||||
if result:
|
||||
return {"success": True, "data": result}
|
||||
else:
|
||||
return {"success": False, "error": "Failed to consume ingredients"}
|
||||
|
||||
if response.status_code == 200:
|
||||
return {"success": True, "data": response.json()}
|
||||
else:
|
||||
logger.error(f"Failed to consume ingredients: {response.status_code}")
|
||||
return {"success": False, "error": response.text}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error consuming ingredients: {e}")
|
||||
return {"success": False, "error": str(e)}
|
||||
@@ -142,19 +115,13 @@ class InventoryClient:
|
||||
) -> Dict[str, Any]:
|
||||
"""Add finished product to inventory after production"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/api/v1/stock/add",
|
||||
headers={"X-Tenant-ID": str(tenant_id)},
|
||||
json=product_data
|
||||
)
|
||||
result = await self._shared_client.receive_stock(product_data, str(tenant_id))
|
||||
|
||||
if result:
|
||||
return {"success": True, "data": result}
|
||||
else:
|
||||
return {"success": False, "error": "Failed to add finished product"}
|
||||
|
||||
if response.status_code == 200:
|
||||
return {"success": True, "data": response.json()}
|
||||
else:
|
||||
logger.error(f"Failed to add finished product: {response.status_code}")
|
||||
return {"success": False, "error": response.text}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error adding finished product: {e}")
|
||||
return {"success": False, "error": str(e)}
|
||||
|
||||
@@ -10,11 +10,12 @@ from uuid import UUID
|
||||
from pydantic import BaseModel, Field
|
||||
import structlog
|
||||
|
||||
from app.services.onboarding_import_service import (
|
||||
OnboardingImportService,
|
||||
OnboardingImportResult,
|
||||
InventoryCreationRequest,
|
||||
get_onboarding_import_service
|
||||
from app.services.ai_onboarding_service import (
|
||||
AIOnboardingService,
|
||||
OnboardingValidationResult,
|
||||
ProductSuggestionsResult,
|
||||
OnboardingImportResult,
|
||||
get_ai_onboarding_service
|
||||
)
|
||||
from shared.auth.decorators import get_current_user_dep, get_current_tenant_id_dep
|
||||
|
||||
@@ -22,16 +23,6 @@ router = APIRouter(tags=["onboarding"])
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class OnboardingAnalysisResponse(BaseModel):
|
||||
"""Response for onboarding analysis"""
|
||||
total_products_found: int
|
||||
inventory_suggestions: List[Dict[str, Any]]
|
||||
business_model_analysis: Dict[str, Any]
|
||||
import_job_id: str
|
||||
status: str
|
||||
processed_rows: int
|
||||
errors: List[str]
|
||||
warnings: List[str]
|
||||
|
||||
|
||||
class InventoryApprovalRequest(BaseModel):
|
||||
@@ -58,23 +49,22 @@ class SalesImportResponse(BaseModel):
|
||||
warnings: List[str]
|
||||
|
||||
|
||||
@router.post("/tenants/{tenant_id}/onboarding/analyze", response_model=OnboardingAnalysisResponse)
|
||||
async def analyze_onboarding_data(
|
||||
@router.post("/tenants/{tenant_id}/onboarding/validate-file", response_model=FileValidationResponse)
|
||||
async def validate_onboarding_file(
|
||||
file: UploadFile = File(..., description="Sales data CSV/Excel file"),
|
||||
tenant_id: UUID = Path(..., description="Tenant ID"),
|
||||
current_tenant: str = Depends(get_current_tenant_id_dep),
|
||||
current_user: Dict[str, Any] = Depends(get_current_user_dep),
|
||||
onboarding_service: OnboardingImportService = Depends(get_onboarding_import_service)
|
||||
onboarding_service: AIOnboardingService = Depends(get_ai_onboarding_service)
|
||||
):
|
||||
"""
|
||||
Step 1: Analyze uploaded sales data and suggest inventory items
|
||||
Step 1: Validate uploaded file and extract unique products
|
||||
|
||||
This endpoint:
|
||||
1. Parses the uploaded sales file
|
||||
2. Extracts unique products and sales metrics
|
||||
3. Uses AI to classify products and suggest inventory items
|
||||
4. Analyzes business model (production vs retail)
|
||||
5. Returns suggestions for user review
|
||||
1. Validates the file format and content
|
||||
2. Checks for required columns (date, product, etc.)
|
||||
3. Extracts unique products from sales data
|
||||
4. Returns validation results and product list
|
||||
"""
|
||||
try:
|
||||
# Verify tenant access
|
||||
@@ -89,34 +79,42 @@ async def analyze_onboarding_data(
|
||||
if not any(file.filename.lower().endswith(ext) for ext in allowed_extensions):
|
||||
raise HTTPException(status_code=400, detail=f"Unsupported file format. Allowed: {allowed_extensions}")
|
||||
|
||||
# Determine file format
|
||||
file_format = "csv" if file.filename.lower().endswith('.csv') else "excel"
|
||||
|
||||
# Read file content
|
||||
file_content = await file.read()
|
||||
if not file_content:
|
||||
raise HTTPException(status_code=400, detail="File is empty")
|
||||
|
||||
# Analyze the data
|
||||
result = await onboarding_service.analyze_sales_data_for_onboarding(
|
||||
file_content=file_content,
|
||||
filename=file.filename,
|
||||
tenant_id=tenant_id,
|
||||
user_id=UUID(current_user['user_id'])
|
||||
# Convert bytes to string for CSV
|
||||
if file_format == "csv":
|
||||
file_data = file_content.decode('utf-8')
|
||||
else:
|
||||
import base64
|
||||
file_data = base64.b64encode(file_content).decode('utf-8')
|
||||
|
||||
# Validate and extract products
|
||||
result = await onboarding_service.validate_and_extract_products(
|
||||
file_data=file_data,
|
||||
file_format=file_format,
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
response = OnboardingAnalysisResponse(
|
||||
total_products_found=result.total_products_found,
|
||||
inventory_suggestions=result.inventory_suggestions,
|
||||
business_model_analysis=result.business_model_analysis,
|
||||
import_job_id=str(result.import_job_id),
|
||||
status=result.status,
|
||||
processed_rows=result.processed_rows,
|
||||
errors=result.errors,
|
||||
warnings=result.warnings
|
||||
response = FileValidationResponse(
|
||||
is_valid=result.is_valid,
|
||||
total_records=result.total_records,
|
||||
unique_products=result.unique_products,
|
||||
product_list=result.product_list,
|
||||
validation_errors=result.validation_details.errors,
|
||||
validation_warnings=result.validation_details.warnings,
|
||||
summary=result.summary
|
||||
)
|
||||
|
||||
logger.info("Onboarding analysis complete",
|
||||
logger.info("File validation complete",
|
||||
filename=file.filename,
|
||||
products_found=result.total_products_found,
|
||||
business_model=result.business_model_analysis.get('model'),
|
||||
is_valid=result.is_valid,
|
||||
unique_products=result.unique_products,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return response
|
||||
@@ -124,9 +122,120 @@ async def analyze_onboarding_data(
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error("Failed onboarding analysis",
|
||||
logger.error("Failed file validation",
|
||||
error=str(e), filename=file.filename if file else None, tenant_id=tenant_id)
|
||||
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=f"Validation failed: {str(e)}")
|
||||
|
||||
|
||||
@router.post("/tenants/{tenant_id}/onboarding/generate-suggestions", response_model=ProductSuggestionsResponse)
|
||||
async def generate_inventory_suggestions(
|
||||
file: UploadFile = File(..., description="Same sales data file from step 1"),
|
||||
product_list: str = Form(..., description="JSON array of product names to classify"),
|
||||
tenant_id: UUID = Path(..., description="Tenant ID"),
|
||||
current_tenant: str = Depends(get_current_tenant_id_dep),
|
||||
current_user: Dict[str, Any] = Depends(get_current_user_dep),
|
||||
onboarding_service: AIOnboardingService = Depends(get_ai_onboarding_service)
|
||||
):
|
||||
"""
|
||||
Step 2: Generate AI-powered inventory suggestions
|
||||
|
||||
This endpoint:
|
||||
1. Takes the validated file and product list from step 1
|
||||
2. Uses AI to classify products into inventory categories
|
||||
3. Analyzes business model (production vs retail)
|
||||
4. Returns detailed suggestions for user review
|
||||
"""
|
||||
try:
|
||||
# Verify tenant access
|
||||
if str(tenant_id) != current_tenant:
|
||||
raise HTTPException(status_code=403, detail="Access denied to this tenant")
|
||||
|
||||
# Parse product list
|
||||
import json
|
||||
try:
|
||||
products = json.loads(product_list)
|
||||
except json.JSONDecodeError as e:
|
||||
raise HTTPException(status_code=400, detail=f"Invalid product list format: {str(e)}")
|
||||
|
||||
if not products:
|
||||
raise HTTPException(status_code=400, detail="No products provided")
|
||||
|
||||
# Determine file format
|
||||
file_format = "csv" if file.filename.lower().endswith('.csv') else "excel"
|
||||
|
||||
# Read file content
|
||||
file_content = await file.read()
|
||||
if not file_content:
|
||||
raise HTTPException(status_code=400, detail="File is empty")
|
||||
|
||||
# Convert bytes to string for CSV
|
||||
if file_format == "csv":
|
||||
file_data = file_content.decode('utf-8')
|
||||
else:
|
||||
import base64
|
||||
file_data = base64.b64encode(file_content).decode('utf-8')
|
||||
|
||||
# Generate suggestions
|
||||
result = await onboarding_service.generate_inventory_suggestions(
|
||||
product_list=products,
|
||||
file_data=file_data,
|
||||
file_format=file_format,
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
# Convert suggestions to dict format
|
||||
suggestions_dict = []
|
||||
for suggestion in result.suggestions:
|
||||
suggestion_dict = {
|
||||
"suggestion_id": suggestion.suggestion_id,
|
||||
"original_name": suggestion.original_name,
|
||||
"suggested_name": suggestion.suggested_name,
|
||||
"product_type": suggestion.product_type,
|
||||
"category": suggestion.category,
|
||||
"unit_of_measure": suggestion.unit_of_measure,
|
||||
"confidence_score": suggestion.confidence_score,
|
||||
"estimated_shelf_life_days": suggestion.estimated_shelf_life_days,
|
||||
"requires_refrigeration": suggestion.requires_refrigeration,
|
||||
"requires_freezing": suggestion.requires_freezing,
|
||||
"is_seasonal": suggestion.is_seasonal,
|
||||
"suggested_supplier": suggestion.suggested_supplier,
|
||||
"notes": suggestion.notes,
|
||||
"sales_data": suggestion.sales_data
|
||||
}
|
||||
suggestions_dict.append(suggestion_dict)
|
||||
|
||||
business_model_dict = {
|
||||
"model": result.business_model_analysis.model,
|
||||
"confidence": result.business_model_analysis.confidence,
|
||||
"ingredient_count": result.business_model_analysis.ingredient_count,
|
||||
"finished_product_count": result.business_model_analysis.finished_product_count,
|
||||
"ingredient_ratio": result.business_model_analysis.ingredient_ratio,
|
||||
"recommendations": result.business_model_analysis.recommendations
|
||||
}
|
||||
|
||||
response = ProductSuggestionsResponse(
|
||||
suggestions=suggestions_dict,
|
||||
business_model_analysis=business_model_dict,
|
||||
total_products=result.total_products,
|
||||
high_confidence_count=result.high_confidence_count,
|
||||
low_confidence_count=result.low_confidence_count,
|
||||
processing_time_seconds=result.processing_time_seconds
|
||||
)
|
||||
|
||||
logger.info("AI suggestions generated",
|
||||
total_products=result.total_products,
|
||||
business_model=result.business_model_analysis.model,
|
||||
high_confidence=result.high_confidence_count,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return response
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error("Failed to generate suggestions",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
raise HTTPException(status_code=500, detail=f"Suggestion generation failed: {str(e)}")
|
||||
|
||||
|
||||
@router.post("/tenants/{tenant_id}/onboarding/create-inventory", response_model=InventoryCreationResponse)
|
||||
@@ -135,16 +244,16 @@ async def create_inventory_from_suggestions(
|
||||
tenant_id: UUID = Path(..., description="Tenant ID"),
|
||||
current_tenant: str = Depends(get_current_tenant_id_dep),
|
||||
current_user: Dict[str, Any] = Depends(get_current_user_dep),
|
||||
onboarding_service: OnboardingImportService = Depends(get_onboarding_import_service)
|
||||
onboarding_service: AIOnboardingService = Depends(get_ai_onboarding_service)
|
||||
):
|
||||
"""
|
||||
Step 2: Create inventory items from approved suggestions
|
||||
Step 3: Create inventory items from approved suggestions
|
||||
|
||||
This endpoint:
|
||||
1. Takes user-approved inventory suggestions
|
||||
2. Applies any user modifications
|
||||
1. Takes user-approved inventory suggestions from step 2
|
||||
2. Applies any user modifications to suggestions
|
||||
3. Creates inventory items via inventory service
|
||||
4. Returns creation results
|
||||
4. Returns creation results for final import step
|
||||
"""
|
||||
try:
|
||||
# Verify tenant access
|
||||
@@ -154,18 +263,9 @@ async def create_inventory_from_suggestions(
|
||||
if not request.suggestions:
|
||||
raise HTTPException(status_code=400, detail="No suggestions provided")
|
||||
|
||||
# Convert to internal format
|
||||
approval_requests = []
|
||||
for suggestion in request.suggestions:
|
||||
approval_requests.append(InventoryCreationRequest(
|
||||
suggestion_id=suggestion.get('suggestion_id'),
|
||||
approved=suggestion.get('approved', False),
|
||||
modifications=suggestion.get('modifications', {})
|
||||
))
|
||||
|
||||
# Create inventory items
|
||||
# Create inventory items using new service
|
||||
result = await onboarding_service.create_inventory_from_suggestions(
|
||||
suggestions_approval=approval_requests,
|
||||
approved_suggestions=request.suggestions,
|
||||
tenant_id=tenant_id,
|
||||
user_id=UUID(current_user['user_id'])
|
||||
)
|
||||
@@ -199,16 +299,16 @@ async def import_sales_with_inventory(
|
||||
tenant_id: UUID = Path(..., description="Tenant ID"),
|
||||
current_tenant: str = Depends(get_current_tenant_id_dep),
|
||||
current_user: Dict[str, Any] = Depends(get_current_user_dep),
|
||||
onboarding_service: OnboardingImportService = Depends(get_onboarding_import_service)
|
||||
onboarding_service: AIOnboardingService = Depends(get_ai_onboarding_service)
|
||||
):
|
||||
"""
|
||||
Step 3: Import sales data using created inventory items
|
||||
Step 4: Final sales data import using created inventory items
|
||||
|
||||
This endpoint:
|
||||
1. Takes the same sales file from step 1
|
||||
2. Uses the inventory mapping from step 2
|
||||
3. Imports sales records with proper inventory product references
|
||||
4. Returns import results
|
||||
1. Takes the same validated sales file from step 1
|
||||
2. Uses the inventory mapping from step 3
|
||||
3. Imports sales records using detailed processing from DataImportService
|
||||
4. Returns final import results - onboarding complete!
|
||||
"""
|
||||
try:
|
||||
# Verify tenant access
|
||||
@@ -223,41 +323,51 @@ async def import_sales_with_inventory(
|
||||
import json
|
||||
try:
|
||||
mapping = json.loads(inventory_mapping)
|
||||
# Convert string UUIDs to UUID objects
|
||||
inventory_mapping_uuids = {
|
||||
product_name: UUID(inventory_id)
|
||||
# Convert to string mapping for the new service
|
||||
inventory_mapping_dict = {
|
||||
product_name: str(inventory_id)
|
||||
for product_name, inventory_id in mapping.items()
|
||||
}
|
||||
except (json.JSONDecodeError, ValueError) as e:
|
||||
except json.JSONDecodeError as e:
|
||||
raise HTTPException(status_code=400, detail=f"Invalid inventory mapping format: {str(e)}")
|
||||
|
||||
# Determine file format
|
||||
file_format = "csv" if file.filename.lower().endswith('.csv') else "excel"
|
||||
|
||||
# Read file content
|
||||
file_content = await file.read()
|
||||
if not file_content:
|
||||
raise HTTPException(status_code=400, detail="File is empty")
|
||||
|
||||
# Import sales data
|
||||
# Convert bytes to string for CSV
|
||||
if file_format == "csv":
|
||||
file_data = file_content.decode('utf-8')
|
||||
else:
|
||||
import base64
|
||||
file_data = base64.b64encode(file_content).decode('utf-8')
|
||||
|
||||
# Import sales data using new service
|
||||
result = await onboarding_service.import_sales_data_with_inventory(
|
||||
file_content=file_content,
|
||||
filename=file.filename,
|
||||
file_data=file_data,
|
||||
file_format=file_format,
|
||||
inventory_mapping=inventory_mapping_dict,
|
||||
tenant_id=tenant_id,
|
||||
user_id=UUID(current_user['user_id']),
|
||||
inventory_mapping=inventory_mapping_uuids
|
||||
filename=file.filename
|
||||
)
|
||||
|
||||
response = SalesImportResponse(
|
||||
import_job_id=str(result.import_job_id),
|
||||
status=result.status,
|
||||
processed_rows=result.processed_rows,
|
||||
successful_imports=result.successful_imports,
|
||||
failed_imports=result.failed_imports,
|
||||
errors=result.errors,
|
||||
warnings=result.warnings
|
||||
import_job_id="onboarding-" + str(tenant_id), # Generate a simple job ID
|
||||
status="completed" if result.success else "failed",
|
||||
processed_rows=result.import_details.records_processed,
|
||||
successful_imports=result.import_details.records_created,
|
||||
failed_imports=result.import_details.records_failed,
|
||||
errors=[error.get("message", str(error)) for error in result.import_details.errors],
|
||||
warnings=[warning.get("message", str(warning)) for warning in result.import_details.warnings]
|
||||
)
|
||||
|
||||
logger.info("Sales import complete",
|
||||
successful=result.successful_imports,
|
||||
failed=result.failed_imports,
|
||||
successful=result.import_details.records_created,
|
||||
failed=result.import_details.records_failed,
|
||||
filename=file.filename,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
|
||||
627
services/sales/app/services/ai_onboarding_service.py
Normal file
627
services/sales/app/services/ai_onboarding_service.py
Normal file
@@ -0,0 +1,627 @@
|
||||
# services/sales/app/services/ai_onboarding_service.py
|
||||
"""
|
||||
AI-Powered Onboarding Service
|
||||
Handles the complete onboarding flow: File validation -> Product extraction -> Inventory suggestions -> Data processing
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import structlog
|
||||
from typing import List, Dict, Any, Optional
|
||||
from uuid import UUID, uuid4
|
||||
from dataclasses import dataclass
|
||||
import asyncio
|
||||
|
||||
from app.services.data_import_service import DataImportService, SalesValidationResult, SalesImportResult
|
||||
from app.services.inventory_client import InventoryServiceClient
|
||||
from app.core.database import get_db_transaction
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProductSuggestion:
|
||||
"""Single product suggestion from AI classification"""
|
||||
suggestion_id: str
|
||||
original_name: str
|
||||
suggested_name: str
|
||||
product_type: str
|
||||
category: str
|
||||
unit_of_measure: str
|
||||
confidence_score: float
|
||||
estimated_shelf_life_days: Optional[int] = None
|
||||
requires_refrigeration: bool = False
|
||||
requires_freezing: bool = False
|
||||
is_seasonal: bool = False
|
||||
suggested_supplier: Optional[str] = None
|
||||
notes: Optional[str] = None
|
||||
sales_data: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BusinessModelAnalysis:
|
||||
"""Business model analysis results"""
|
||||
model: str # production, retail, hybrid
|
||||
confidence: float
|
||||
ingredient_count: int
|
||||
finished_product_count: int
|
||||
ingredient_ratio: float
|
||||
recommendations: List[str]
|
||||
|
||||
|
||||
@dataclass
|
||||
class OnboardingValidationResult:
|
||||
"""Result of onboarding file validation step"""
|
||||
is_valid: bool
|
||||
total_records: int
|
||||
unique_products: int
|
||||
validation_details: SalesValidationResult
|
||||
product_list: List[str]
|
||||
summary: Dict[str, Any]
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProductSuggestionsResult:
|
||||
"""Result of AI product classification step"""
|
||||
suggestions: List[ProductSuggestion]
|
||||
business_model_analysis: BusinessModelAnalysis
|
||||
total_products: int
|
||||
high_confidence_count: int
|
||||
low_confidence_count: int
|
||||
processing_time_seconds: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class OnboardingImportResult:
|
||||
"""Result of final data import step"""
|
||||
success: bool
|
||||
import_details: SalesImportResult
|
||||
inventory_items_created: int
|
||||
inventory_creation_errors: List[str]
|
||||
final_summary: Dict[str, Any]
|
||||
|
||||
|
||||
class AIOnboardingService:
|
||||
"""
|
||||
Unified AI-powered onboarding service that orchestrates the complete flow:
|
||||
1. File validation and product extraction
|
||||
2. AI-powered inventory suggestions
|
||||
3. User confirmation and inventory creation
|
||||
4. Final sales data import
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.data_import_service = DataImportService()
|
||||
self.inventory_client = InventoryServiceClient()
|
||||
|
||||
# ================================================================
|
||||
# STEP 1: FILE VALIDATION AND PRODUCT EXTRACTION
|
||||
# ================================================================
|
||||
|
||||
async def validate_and_extract_products(
|
||||
self,
|
||||
file_data: str,
|
||||
file_format: str,
|
||||
tenant_id: UUID
|
||||
) -> OnboardingValidationResult:
|
||||
"""
|
||||
Step 1: Validate uploaded file and extract unique products
|
||||
This uses the detailed validation from data_import_service
|
||||
"""
|
||||
try:
|
||||
logger.info("Starting onboarding validation and product extraction",
|
||||
file_format=file_format, tenant_id=tenant_id)
|
||||
|
||||
# Use data_import_service for detailed validation
|
||||
validation_data = {
|
||||
"tenant_id": str(tenant_id),
|
||||
"data": file_data,
|
||||
"data_format": file_format,
|
||||
"validate_only": True,
|
||||
"source": "ai_onboarding"
|
||||
}
|
||||
|
||||
validation_result = await self.data_import_service.validate_import_data(validation_data)
|
||||
|
||||
# Extract unique products if validation passes
|
||||
product_list = []
|
||||
unique_products = 0
|
||||
|
||||
if validation_result.is_valid and file_format.lower() == "csv":
|
||||
try:
|
||||
# Parse CSV to extract unique products
|
||||
import csv
|
||||
import io
|
||||
|
||||
reader = csv.DictReader(io.StringIO(file_data))
|
||||
rows = list(reader)
|
||||
|
||||
# Use data_import_service column detection
|
||||
column_mapping = self.data_import_service._detect_columns(list(rows[0].keys()) if rows else [])
|
||||
|
||||
if column_mapping.get('product'):
|
||||
product_column = column_mapping['product']
|
||||
|
||||
# Extract and clean unique products
|
||||
products_raw = [row.get(product_column, '').strip() for row in rows if row.get(product_column, '').strip()]
|
||||
|
||||
# Clean product names using data_import_service method
|
||||
products_cleaned = [
|
||||
self.data_import_service._clean_product_name(product)
|
||||
for product in products_raw
|
||||
]
|
||||
|
||||
# Get unique products
|
||||
product_list = list(set([p for p in products_cleaned if p and p != "Producto sin nombre"]))
|
||||
unique_products = len(product_list)
|
||||
|
||||
logger.info("Extracted unique products",
|
||||
total_rows=len(rows), unique_products=unique_products)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to extract products", error=str(e))
|
||||
# Don't fail validation just because product extraction failed
|
||||
pass
|
||||
|
||||
result = OnboardingValidationResult(
|
||||
is_valid=validation_result.is_valid,
|
||||
total_records=validation_result.total_records,
|
||||
unique_products=unique_products,
|
||||
validation_details=validation_result,
|
||||
product_list=product_list,
|
||||
summary={
|
||||
"status": "valid" if validation_result.is_valid else "invalid",
|
||||
"file_format": file_format,
|
||||
"total_records": validation_result.total_records,
|
||||
"unique_products": unique_products,
|
||||
"ready_for_ai_classification": validation_result.is_valid and unique_products > 0,
|
||||
"next_step": "ai_classification" if validation_result.is_valid and unique_products > 0 else "fix_validation_errors"
|
||||
}
|
||||
)
|
||||
|
||||
logger.info("Onboarding validation completed",
|
||||
is_valid=result.is_valid,
|
||||
unique_products=unique_products,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Onboarding validation failed", error=str(e), tenant_id=tenant_id)
|
||||
|
||||
return OnboardingValidationResult(
|
||||
is_valid=False,
|
||||
total_records=0,
|
||||
unique_products=0,
|
||||
validation_details=SalesValidationResult(
|
||||
is_valid=False,
|
||||
total_records=0,
|
||||
valid_records=0,
|
||||
invalid_records=0,
|
||||
errors=[{
|
||||
"type": "system_error",
|
||||
"message": f"Onboarding validation error: {str(e)}",
|
||||
"field": None,
|
||||
"row": None,
|
||||
"code": "ONBOARDING_VALIDATION_ERROR"
|
||||
}],
|
||||
warnings=[],
|
||||
summary={}
|
||||
),
|
||||
product_list=[],
|
||||
summary={
|
||||
"status": "error",
|
||||
"error_message": str(e),
|
||||
"next_step": "retry_upload"
|
||||
}
|
||||
)
|
||||
|
||||
# ================================================================
|
||||
# STEP 2: AI PRODUCT CLASSIFICATION
|
||||
# ================================================================
|
||||
|
||||
async def generate_inventory_suggestions(
|
||||
self,
|
||||
product_list: List[str],
|
||||
file_data: str,
|
||||
file_format: str,
|
||||
tenant_id: UUID
|
||||
) -> ProductSuggestionsResult:
|
||||
"""
|
||||
Step 2: Generate AI-powered inventory suggestions for products
|
||||
"""
|
||||
import time
|
||||
start_time = time.time()
|
||||
|
||||
try:
|
||||
logger.info("Starting AI inventory suggestions",
|
||||
product_count=len(product_list), tenant_id=tenant_id)
|
||||
|
||||
if not product_list:
|
||||
raise ValueError("No products provided for classification")
|
||||
|
||||
# Analyze sales data for each product to provide context
|
||||
product_analysis = await self._analyze_product_sales_data(
|
||||
product_list, file_data, file_format
|
||||
)
|
||||
|
||||
# Prepare products for classification
|
||||
products_for_classification = []
|
||||
for product_name in product_list:
|
||||
sales_data = product_analysis.get(product_name, {})
|
||||
products_for_classification.append({
|
||||
"product_name": product_name,
|
||||
"sales_volume": sales_data.get("total_quantity"),
|
||||
"sales_data": sales_data
|
||||
})
|
||||
|
||||
# Call inventory service for AI classification
|
||||
classification_result = await self.inventory_client.classify_products_batch(
|
||||
products_for_classification, tenant_id
|
||||
)
|
||||
|
||||
if not classification_result or "suggestions" not in classification_result:
|
||||
raise ValueError("Invalid classification response from inventory service")
|
||||
|
||||
suggestions_raw = classification_result["suggestions"]
|
||||
business_model_raw = classification_result.get("business_model_analysis", {})
|
||||
|
||||
# Convert to dataclass objects
|
||||
suggestions = []
|
||||
for suggestion_data in suggestions_raw:
|
||||
suggestion = ProductSuggestion(
|
||||
suggestion_id=suggestion_data.get("suggestion_id", str(uuid4())),
|
||||
original_name=suggestion_data["original_name"],
|
||||
suggested_name=suggestion_data["suggested_name"],
|
||||
product_type=suggestion_data["product_type"],
|
||||
category=suggestion_data["category"],
|
||||
unit_of_measure=suggestion_data["unit_of_measure"],
|
||||
confidence_score=suggestion_data["confidence_score"],
|
||||
estimated_shelf_life_days=suggestion_data.get("estimated_shelf_life_days"),
|
||||
requires_refrigeration=suggestion_data.get("requires_refrigeration", False),
|
||||
requires_freezing=suggestion_data.get("requires_freezing", False),
|
||||
is_seasonal=suggestion_data.get("is_seasonal", False),
|
||||
suggested_supplier=suggestion_data.get("suggested_supplier"),
|
||||
notes=suggestion_data.get("notes"),
|
||||
sales_data=product_analysis.get(suggestion_data["original_name"])
|
||||
)
|
||||
suggestions.append(suggestion)
|
||||
|
||||
business_model = BusinessModelAnalysis(
|
||||
model=business_model_raw.get("model", "unknown"),
|
||||
confidence=business_model_raw.get("confidence", 0.0),
|
||||
ingredient_count=business_model_raw.get("ingredient_count", 0),
|
||||
finished_product_count=business_model_raw.get("finished_product_count", 0),
|
||||
ingredient_ratio=business_model_raw.get("ingredient_ratio", 0.0),
|
||||
recommendations=business_model_raw.get("recommendations", [])
|
||||
)
|
||||
|
||||
# Calculate confidence metrics
|
||||
high_confidence_count = sum(1 for s in suggestions if s.confidence_score >= 0.7)
|
||||
low_confidence_count = sum(1 for s in suggestions if s.confidence_score < 0.6)
|
||||
|
||||
processing_time = time.time() - start_time
|
||||
|
||||
result = ProductSuggestionsResult(
|
||||
suggestions=suggestions,
|
||||
business_model_analysis=business_model,
|
||||
total_products=len(suggestions),
|
||||
high_confidence_count=high_confidence_count,
|
||||
low_confidence_count=low_confidence_count,
|
||||
processing_time_seconds=processing_time
|
||||
)
|
||||
|
||||
logger.info("AI inventory suggestions completed",
|
||||
total_suggestions=len(suggestions),
|
||||
business_model=business_model.model,
|
||||
high_confidence=high_confidence_count,
|
||||
processing_time=processing_time,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
processing_time = time.time() - start_time
|
||||
logger.error("AI inventory suggestions failed",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
|
||||
# Return fallback suggestions
|
||||
fallback_suggestions = [
|
||||
ProductSuggestion(
|
||||
suggestion_id=str(uuid4()),
|
||||
original_name=product_name,
|
||||
suggested_name=product_name.title(),
|
||||
product_type="finished_product",
|
||||
category="other_products",
|
||||
unit_of_measure="units",
|
||||
confidence_score=0.3,
|
||||
notes="Fallback suggestion - requires manual review"
|
||||
)
|
||||
for product_name in product_list
|
||||
]
|
||||
|
||||
return ProductSuggestionsResult(
|
||||
suggestions=fallback_suggestions,
|
||||
business_model_analysis=BusinessModelAnalysis(
|
||||
model="unknown",
|
||||
confidence=0.0,
|
||||
ingredient_count=0,
|
||||
finished_product_count=len(fallback_suggestions),
|
||||
ingredient_ratio=0.0,
|
||||
recommendations=["Manual review required for all products"]
|
||||
),
|
||||
total_products=len(fallback_suggestions),
|
||||
high_confidence_count=0,
|
||||
low_confidence_count=len(fallback_suggestions),
|
||||
processing_time_seconds=processing_time
|
||||
)
|
||||
|
||||
# ================================================================
|
||||
# STEP 3: INVENTORY CREATION (after user confirmation)
|
||||
# ================================================================
|
||||
|
||||
async def create_inventory_from_suggestions(
|
||||
self,
|
||||
approved_suggestions: List[Dict[str, Any]],
|
||||
tenant_id: UUID,
|
||||
user_id: UUID
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Step 3: Create inventory items from user-approved suggestions
|
||||
"""
|
||||
try:
|
||||
logger.info("Creating inventory from approved suggestions",
|
||||
approved_count=len(approved_suggestions), tenant_id=tenant_id)
|
||||
|
||||
created_items = []
|
||||
failed_items = []
|
||||
|
||||
for approval in approved_suggestions:
|
||||
suggestion_id = approval.get("suggestion_id")
|
||||
is_approved = approval.get("approved", False)
|
||||
modifications = approval.get("modifications", {})
|
||||
|
||||
if not is_approved:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Build inventory item data from suggestion and modifications
|
||||
inventory_data = {
|
||||
"name": modifications.get("name") or approval.get("suggested_name"),
|
||||
"product_type": modifications.get("product_type") or approval.get("product_type"),
|
||||
"category": modifications.get("category") or approval.get("category"),
|
||||
"unit_of_measure": modifications.get("unit_of_measure") or approval.get("unit_of_measure"),
|
||||
"description": modifications.get("description") or approval.get("notes", ""),
|
||||
"estimated_shelf_life_days": modifications.get("estimated_shelf_life_days") or approval.get("estimated_shelf_life_days"),
|
||||
"requires_refrigeration": modifications.get("requires_refrigeration", approval.get("requires_refrigeration", False)),
|
||||
"requires_freezing": modifications.get("requires_freezing", approval.get("requires_freezing", False)),
|
||||
"is_seasonal": modifications.get("is_seasonal", approval.get("is_seasonal", False)),
|
||||
"suggested_supplier": modifications.get("suggested_supplier") or approval.get("suggested_supplier"),
|
||||
"is_active": True,
|
||||
"source": "ai_onboarding"
|
||||
}
|
||||
|
||||
# Create inventory item via inventory service
|
||||
created_item = await self.inventory_client.create_ingredient(
|
||||
inventory_data, str(tenant_id)
|
||||
)
|
||||
|
||||
if created_item:
|
||||
created_items.append({
|
||||
"suggestion_id": suggestion_id,
|
||||
"inventory_item": created_item,
|
||||
"original_name": approval.get("original_name")
|
||||
})
|
||||
logger.info("Created inventory item",
|
||||
item_name=inventory_data["name"],
|
||||
suggestion_id=suggestion_id)
|
||||
else:
|
||||
failed_items.append({
|
||||
"suggestion_id": suggestion_id,
|
||||
"error": "Failed to create inventory item - no response"
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to create inventory item",
|
||||
error=str(e), suggestion_id=suggestion_id)
|
||||
failed_items.append({
|
||||
"suggestion_id": suggestion_id,
|
||||
"error": str(e)
|
||||
})
|
||||
|
||||
success_rate = len(created_items) / max(1, len(approved_suggestions)) * 100
|
||||
|
||||
result = {
|
||||
"created_items": created_items,
|
||||
"failed_items": failed_items,
|
||||
"total_approved": len(approved_suggestions),
|
||||
"successful_creations": len(created_items),
|
||||
"failed_creations": len(failed_items),
|
||||
"success_rate": success_rate,
|
||||
"ready_for_import": len(created_items) > 0
|
||||
}
|
||||
|
||||
logger.info("Inventory creation completed",
|
||||
created=len(created_items),
|
||||
failed=len(failed_items),
|
||||
success_rate=success_rate,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Inventory creation failed", error=str(e), tenant_id=tenant_id)
|
||||
raise
|
||||
|
||||
# ================================================================
|
||||
# STEP 4: FINAL DATA IMPORT
|
||||
# ================================================================
|
||||
|
||||
async def import_sales_data_with_inventory(
|
||||
self,
|
||||
file_data: str,
|
||||
file_format: str,
|
||||
inventory_mapping: Dict[str, str], # original_product_name -> inventory_item_id
|
||||
tenant_id: UUID,
|
||||
filename: Optional[str] = None
|
||||
) -> OnboardingImportResult:
|
||||
"""
|
||||
Step 4: Import sales data using the detailed processing from data_import_service
|
||||
"""
|
||||
try:
|
||||
logger.info("Starting final sales data import with inventory mapping",
|
||||
mappings_count=len(inventory_mapping), tenant_id=tenant_id)
|
||||
|
||||
# Use data_import_service for the actual import processing
|
||||
import_result = await self.data_import_service.process_import(
|
||||
str(tenant_id), file_data, file_format, filename
|
||||
)
|
||||
|
||||
result = OnboardingImportResult(
|
||||
success=import_result.success,
|
||||
import_details=import_result,
|
||||
inventory_items_created=len(inventory_mapping),
|
||||
inventory_creation_errors=[],
|
||||
final_summary={
|
||||
"status": "completed" if import_result.success else "failed",
|
||||
"total_records": import_result.records_processed,
|
||||
"successful_imports": import_result.records_created,
|
||||
"failed_imports": import_result.records_failed,
|
||||
"inventory_items": len(inventory_mapping),
|
||||
"processing_time": import_result.processing_time_seconds,
|
||||
"onboarding_complete": import_result.success
|
||||
}
|
||||
)
|
||||
|
||||
logger.info("Final sales data import completed",
|
||||
success=import_result.success,
|
||||
records_created=import_result.records_created,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Final sales data import failed", error=str(e), tenant_id=tenant_id)
|
||||
|
||||
return OnboardingImportResult(
|
||||
success=False,
|
||||
import_details=SalesImportResult(
|
||||
success=False,
|
||||
records_processed=0,
|
||||
records_created=0,
|
||||
records_updated=0,
|
||||
records_failed=0,
|
||||
errors=[{
|
||||
"type": "import_error",
|
||||
"message": f"Import failed: {str(e)}",
|
||||
"field": None,
|
||||
"row": None,
|
||||
"code": "FINAL_IMPORT_ERROR"
|
||||
}],
|
||||
warnings=[],
|
||||
processing_time_seconds=0.0
|
||||
),
|
||||
inventory_items_created=len(inventory_mapping),
|
||||
inventory_creation_errors=[str(e)],
|
||||
final_summary={
|
||||
"status": "failed",
|
||||
"error_message": str(e),
|
||||
"onboarding_complete": False
|
||||
}
|
||||
)
|
||||
|
||||
# ================================================================
|
||||
# HELPER METHODS
|
||||
# ================================================================
|
||||
|
||||
async def _analyze_product_sales_data(
|
||||
self,
|
||||
product_list: List[str],
|
||||
file_data: str,
|
||||
file_format: str
|
||||
) -> Dict[str, Dict[str, Any]]:
|
||||
"""Analyze sales data for each product to provide context for AI classification"""
|
||||
try:
|
||||
if file_format.lower() != "csv":
|
||||
return {}
|
||||
|
||||
import csv
|
||||
import io
|
||||
|
||||
reader = csv.DictReader(io.StringIO(file_data))
|
||||
rows = list(reader)
|
||||
|
||||
if not rows:
|
||||
return {}
|
||||
|
||||
# Use data_import_service column detection
|
||||
column_mapping = self.data_import_service._detect_columns(list(rows[0].keys()))
|
||||
|
||||
if not column_mapping.get('product'):
|
||||
return {}
|
||||
|
||||
product_column = column_mapping['product']
|
||||
quantity_column = column_mapping.get('quantity')
|
||||
revenue_column = column_mapping.get('revenue')
|
||||
date_column = column_mapping.get('date')
|
||||
|
||||
# Analyze each product
|
||||
product_analysis = {}
|
||||
|
||||
for product_name in product_list:
|
||||
# Find all rows for this product
|
||||
product_rows = [
|
||||
row for row in rows
|
||||
if self.data_import_service._clean_product_name(row.get(product_column, '')) == product_name
|
||||
]
|
||||
|
||||
if not product_rows:
|
||||
continue
|
||||
|
||||
# Calculate metrics
|
||||
total_quantity = 0
|
||||
total_revenue = 0
|
||||
sales_count = len(product_rows)
|
||||
|
||||
for row in product_rows:
|
||||
try:
|
||||
# Quantity
|
||||
qty_raw = row.get(quantity_column, 1)
|
||||
if qty_raw and str(qty_raw).strip():
|
||||
qty = int(float(str(qty_raw).replace(',', '.')))
|
||||
total_quantity += qty
|
||||
else:
|
||||
total_quantity += 1
|
||||
|
||||
# Revenue
|
||||
if revenue_column:
|
||||
rev_raw = row.get(revenue_column)
|
||||
if rev_raw and str(rev_raw).strip():
|
||||
rev = float(str(rev_raw).replace(',', '.').replace('€', '').replace('$', '').strip())
|
||||
total_revenue += rev
|
||||
except:
|
||||
continue
|
||||
|
||||
avg_quantity = total_quantity / sales_count if sales_count > 0 else 0
|
||||
avg_revenue = total_revenue / sales_count if sales_count > 0 else 0
|
||||
avg_unit_price = total_revenue / total_quantity if total_quantity > 0 else 0
|
||||
|
||||
product_analysis[product_name] = {
|
||||
"total_quantity": total_quantity,
|
||||
"total_revenue": total_revenue,
|
||||
"sales_count": sales_count,
|
||||
"avg_quantity_per_sale": avg_quantity,
|
||||
"avg_revenue_per_sale": avg_revenue,
|
||||
"avg_unit_price": avg_unit_price
|
||||
}
|
||||
|
||||
return product_analysis
|
||||
|
||||
except Exception as e:
|
||||
logger.warning("Failed to analyze product sales data", error=str(e))
|
||||
return {}
|
||||
|
||||
|
||||
# Factory function for dependency injection
|
||||
def get_ai_onboarding_service() -> AIOnboardingService:
|
||||
"""Get AI onboarding service instance"""
|
||||
return AIOnboardingService()
|
||||
@@ -4,122 +4,83 @@ Inventory Service Client - Inter-service communication
|
||||
Handles communication with the inventory service to fetch product data
|
||||
"""
|
||||
|
||||
import httpx
|
||||
import structlog
|
||||
from typing import Dict, Any, List, Optional
|
||||
from uuid import UUID
|
||||
|
||||
from shared.clients.inventory_client import InventoryServiceClient as SharedInventoryClient
|
||||
from app.core.config import settings
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
class InventoryServiceClient:
|
||||
"""Client for communicating with the inventory service"""
|
||||
"""Client for communicating with the inventory service via shared client"""
|
||||
|
||||
def __init__(self):
|
||||
self.base_url = settings.INVENTORY_SERVICE_URL
|
||||
self.timeout = 30.0
|
||||
self._shared_client = SharedInventoryClient(settings)
|
||||
|
||||
async def classify_products_batch(self, product_list: Dict[str, Any], tenant_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Get product details from inventory service by ID"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/api/v1/tenants/{tenant_id}/inventory/classify-products-batch",
|
||||
headers=self._get_headers(),
|
||||
product_list=product_list
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
product_data = response.json()
|
||||
logger.info("Retrieved product from inventory service",
|
||||
tenant_id=tenant_id)
|
||||
return product_data
|
||||
elif response.status_code == 404:
|
||||
logger.warning("Product not found in inventory service",
|
||||
tenant_id=tenant_id)
|
||||
return None
|
||||
else:
|
||||
logger.error("Failed to fetch product from inventory service",
|
||||
status_code=response.status_code,
|
||||
tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
except httpx.TimeoutException:
|
||||
logger.error("Timeout fetching product from inventory service",
|
||||
tenant_id=tenant_id)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error("Error communicating with inventory service",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
async def classify_products_batch(self, product_list: List[Dict[str, Any]], tenant_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Classify multiple products for inventory creation"""
|
||||
try:
|
||||
# Convert product_list to expected format for shared client
|
||||
products = []
|
||||
for item in product_list:
|
||||
if isinstance(item, str):
|
||||
# If it's just a product name
|
||||
products.append({"product_name": item})
|
||||
elif isinstance(item, dict):
|
||||
# If it's already a dict, ensure required fields
|
||||
product_data = {
|
||||
"product_name": item.get("product_name", item.get("name", str(item))),
|
||||
"sales_volume": item.get("sales_volume", item.get("total_quantity"))
|
||||
}
|
||||
products.append(product_data)
|
||||
|
||||
result = await self._shared_client.classify_products_batch(products, str(tenant_id))
|
||||
if result:
|
||||
logger.info("Classified products batch",
|
||||
count=len(products), tenant_id=tenant_id)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error in batch product classification",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def get_product_by_id(self, product_id: UUID, tenant_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Get product details from inventory service by ID"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/tenants/{tenant_id}/ingredients/{product_id}",
|
||||
headers=self._get_headers()
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
product_data = response.json()
|
||||
logger.info("Retrieved product from inventory service",
|
||||
product_id=product_id, tenant_id=tenant_id)
|
||||
return product_data
|
||||
elif response.status_code == 404:
|
||||
logger.warning("Product not found in inventory service",
|
||||
product_id=product_id, tenant_id=tenant_id)
|
||||
return None
|
||||
else:
|
||||
logger.error("Failed to fetch product from inventory service",
|
||||
status_code=response.status_code,
|
||||
product_id=product_id, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
except httpx.TimeoutException:
|
||||
logger.error("Timeout fetching product from inventory service",
|
||||
product_id=product_id, tenant_id=tenant_id)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error("Error communicating with inventory service",
|
||||
error=str(e), product_id=product_id, tenant_id=tenant_id)
|
||||
return None
|
||||
"""Get product details from inventory service by ID"""
|
||||
try:
|
||||
result = await self._shared_client.get_ingredient_by_id(product_id, str(tenant_id))
|
||||
if result:
|
||||
logger.info("Retrieved product from inventory service",
|
||||
product_id=product_id, tenant_id=tenant_id)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching product by ID",
|
||||
error=str(e), product_id=product_id, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def get_product_by_sku(self, sku: str, tenant_id: UUID) -> Optional[Dict[str, Any]]:
|
||||
"""Get product details from inventory service by SKU"""
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/tenants/{tenant_id}/ingredients",
|
||||
params={"sku": sku, "limit": 1},
|
||||
headers=self._get_headers()
|
||||
)
|
||||
# Search for product by SKU using shared client
|
||||
products = await self._shared_client.search_ingredients(
|
||||
str(tenant_id), search=sku, limit=1
|
||||
)
|
||||
|
||||
if products:
|
||||
product_data = products[0]
|
||||
logger.info("Retrieved product by SKU from inventory service",
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return product_data
|
||||
else:
|
||||
logger.warning("Product not found by SKU in inventory service",
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
products = data.get("items", [])
|
||||
if products:
|
||||
product_data = products[0]
|
||||
logger.info("Retrieved product by SKU from inventory service",
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return product_data
|
||||
else:
|
||||
logger.warning("Product not found by SKU in inventory service",
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return None
|
||||
else:
|
||||
logger.error("Failed to fetch product by SKU from inventory service",
|
||||
status_code=response.status_code,
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
except httpx.TimeoutException:
|
||||
logger.error("Timeout fetching product by SKU from inventory service",
|
||||
sku=sku, tenant_id=tenant_id)
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error("Error communicating with inventory service for SKU",
|
||||
logger.error("Error fetching product by SKU",
|
||||
error=str(e), sku=sku, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
@@ -127,38 +88,16 @@ class InventoryServiceClient:
|
||||
product_type: Optional[str] = None) -> List[Dict[str, Any]]:
|
||||
"""Search products in inventory service"""
|
||||
try:
|
||||
params = {
|
||||
"search": search_term,
|
||||
"limit": 50
|
||||
}
|
||||
if product_type:
|
||||
params["product_type"] = product_type
|
||||
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/tenants/{tenant_id}/ingredients",
|
||||
params=params,
|
||||
headers=self._get_headers()
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
products = data.get("items", [])
|
||||
logger.info("Searched products in inventory service",
|
||||
search_term=search_term, count=len(products), tenant_id=tenant_id)
|
||||
return products
|
||||
else:
|
||||
logger.error("Failed to search products in inventory service",
|
||||
status_code=response.status_code,
|
||||
search_term=search_term, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
except httpx.TimeoutException:
|
||||
logger.error("Timeout searching products in inventory service",
|
||||
search_term=search_term, tenant_id=tenant_id)
|
||||
return []
|
||||
products = await self._shared_client.search_ingredients(
|
||||
str(tenant_id), search=search_term, limit=50
|
||||
)
|
||||
|
||||
logger.info("Searched products in inventory service",
|
||||
search_term=search_term, count=len(products), tenant_id=tenant_id)
|
||||
return products
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error searching products in inventory service",
|
||||
logger.error("Error searching products",
|
||||
error=str(e), search_term=search_term, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
@@ -166,55 +105,18 @@ class InventoryServiceClient:
|
||||
product_type: Optional[str] = None) -> List[Dict[str, Any]]:
|
||||
"""Get products by category from inventory service"""
|
||||
try:
|
||||
params = {
|
||||
"limit": 100
|
||||
}
|
||||
if product_type == "ingredient":
|
||||
params["ingredient_category"] = category
|
||||
elif product_type == "finished_product":
|
||||
params["product_category"] = category
|
||||
else:
|
||||
# Search in both categories if type not specified
|
||||
params["category"] = category
|
||||
|
||||
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
||||
response = await client.get(
|
||||
f"{self.base_url}/api/v1/tenants/{tenant_id}/ingredients",
|
||||
params=params,
|
||||
headers=self._get_headers()
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
products = data.get("items", [])
|
||||
logger.info("Retrieved products by category from inventory service",
|
||||
category=category, count=len(products), tenant_id=tenant_id)
|
||||
return products
|
||||
else:
|
||||
logger.error("Failed to fetch products by category from inventory service",
|
||||
status_code=response.status_code,
|
||||
category=category, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
except httpx.TimeoutException:
|
||||
logger.error("Timeout fetching products by category from inventory service",
|
||||
category=category, tenant_id=tenant_id)
|
||||
return []
|
||||
products = await self._shared_client.search_ingredients(
|
||||
str(tenant_id), category=category, limit=100
|
||||
)
|
||||
|
||||
logger.info("Retrieved products by category from inventory service",
|
||||
category=category, count=len(products), tenant_id=tenant_id)
|
||||
return products
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching products by category from inventory service",
|
||||
logger.error("Error fetching products by category",
|
||||
error=str(e), category=category, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
# Cache synchronization removed - no longer needed with pure inventory reference approach
|
||||
|
||||
def _get_headers(self) -> Dict[str, str]:
|
||||
"""Get headers for inventory service requests"""
|
||||
return {
|
||||
"Content-Type": "application/json",
|
||||
"X-Service-Name": "sales-service",
|
||||
# Add authentication headers if needed
|
||||
}
|
||||
|
||||
|
||||
# Dependency injection
|
||||
async def get_inventory_client() -> InventoryServiceClient:
|
||||
|
||||
@@ -1,446 +0,0 @@
|
||||
# services/sales/app/services/onboarding_import_service.py
|
||||
"""
|
||||
Onboarding Data Import Service
|
||||
Handles historical sales data import with automated inventory creation
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import structlog
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from uuid import UUID, uuid4
|
||||
from datetime import datetime, timezone
|
||||
from dataclasses import dataclass, asdict
|
||||
import asyncio
|
||||
|
||||
from app.services.inventory_client import InventoryServiceClient
|
||||
from app.services.data_import_service import DataImportService
|
||||
from app.models.sales import SalesData
|
||||
from app.core.database import get_db_transaction
|
||||
from app.repositories.sales_repository import SalesRepository
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
@dataclass
|
||||
class OnboardingImportResult:
|
||||
"""Result of onboarding import process"""
|
||||
total_products_found: int
|
||||
inventory_suggestions: List[Dict[str, Any]]
|
||||
business_model_analysis: Dict[str, Any]
|
||||
import_job_id: UUID
|
||||
status: str
|
||||
processed_rows: int
|
||||
successful_imports: int
|
||||
failed_imports: int
|
||||
errors: List[str]
|
||||
warnings: List[str]
|
||||
|
||||
|
||||
@dataclass
|
||||
class InventoryCreationRequest:
|
||||
"""Request to create inventory item from suggestion"""
|
||||
suggestion_id: str
|
||||
approved: bool
|
||||
modifications: Dict[str, Any] # User modifications to the suggestion
|
||||
|
||||
|
||||
class OnboardingImportService:
|
||||
"""Service for handling onboarding data import with inventory automation"""
|
||||
|
||||
def __init__(self):
|
||||
self.inventory_client = InventoryServiceClient()
|
||||
self.data_import_service = DataImportService()
|
||||
|
||||
async def analyze_sales_data_for_onboarding(
|
||||
self,
|
||||
file_content: bytes,
|
||||
filename: str,
|
||||
tenant_id: UUID,
|
||||
user_id: UUID
|
||||
) -> OnboardingImportResult:
|
||||
"""Analyze uploaded sales data and suggest inventory items"""
|
||||
|
||||
try:
|
||||
logger.info("Starting onboarding analysis", filename=filename, tenant_id=tenant_id)
|
||||
|
||||
# Parse the uploaded file
|
||||
df = await self._parse_uploaded_file(file_content, filename)
|
||||
|
||||
# Extract unique products and their sales volumes
|
||||
product_analysis = self._analyze_products_from_sales(df)
|
||||
|
||||
# Get product suggestions from inventory service
|
||||
inventory_suggestions = await self._get_inventory_suggestions(
|
||||
product_analysis, tenant_id
|
||||
)
|
||||
|
||||
# Analyze business model
|
||||
business_model = self._analyze_business_model(inventory_suggestions)
|
||||
|
||||
# Create import job for tracking
|
||||
import_job_id = await self._create_import_job(
|
||||
filename, tenant_id, user_id, len(df)
|
||||
)
|
||||
|
||||
result = OnboardingImportResult(
|
||||
total_products_found=len(product_analysis),
|
||||
inventory_suggestions=inventory_suggestions,
|
||||
business_model_analysis=business_model,
|
||||
import_job_id=import_job_id,
|
||||
status="analysis_complete",
|
||||
processed_rows=len(df),
|
||||
successful_imports=0, # Will be updated when user confirms
|
||||
failed_imports=0,
|
||||
errors=[],
|
||||
warnings=self._generate_warnings(df, inventory_suggestions)
|
||||
)
|
||||
|
||||
logger.info("Onboarding analysis complete",
|
||||
products_found=len(product_analysis),
|
||||
business_model=business_model.get('model'),
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed onboarding analysis", error=str(e), tenant_id=tenant_id)
|
||||
raise
|
||||
|
||||
async def create_inventory_from_suggestions(
|
||||
self,
|
||||
suggestions_approval: List[InventoryCreationRequest],
|
||||
tenant_id: UUID,
|
||||
user_id: UUID
|
||||
) -> Dict[str, Any]:
|
||||
"""Create inventory items from approved suggestions"""
|
||||
|
||||
try:
|
||||
created_items = []
|
||||
failed_items = []
|
||||
|
||||
for request in suggestions_approval:
|
||||
if request.approved:
|
||||
try:
|
||||
# Find the original suggestion
|
||||
suggestion = self._find_suggestion_by_id(request.suggestion_id)
|
||||
if not suggestion:
|
||||
failed_items.append({
|
||||
'suggestion_id': request.suggestion_id,
|
||||
'error': 'Suggestion not found'
|
||||
})
|
||||
continue
|
||||
|
||||
# Apply user modifications
|
||||
final_item_data = self._apply_modifications(suggestion, request.modifications)
|
||||
|
||||
# Create inventory item via inventory service
|
||||
created_item = await self._create_inventory_item(
|
||||
final_item_data, tenant_id, user_id
|
||||
)
|
||||
|
||||
created_items.append(created_item)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to create inventory item",
|
||||
error=str(e), suggestion_id=request.suggestion_id)
|
||||
failed_items.append({
|
||||
'suggestion_id': request.suggestion_id,
|
||||
'error': str(e)
|
||||
})
|
||||
|
||||
logger.info("Inventory creation complete",
|
||||
created=len(created_items), failed=len(failed_items), tenant_id=tenant_id)
|
||||
|
||||
return {
|
||||
'created_items': created_items,
|
||||
'failed_items': failed_items,
|
||||
'total_approved': len([r for r in suggestions_approval if r.approved]),
|
||||
'success_rate': len(created_items) / max(1, len([r for r in suggestions_approval if r.approved]))
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed inventory creation", error=str(e), tenant_id=tenant_id)
|
||||
raise
|
||||
|
||||
async def import_sales_data_with_inventory(
|
||||
self,
|
||||
file_content: bytes,
|
||||
filename: str,
|
||||
tenant_id: UUID,
|
||||
user_id: UUID,
|
||||
inventory_mapping: Dict[str, UUID] # product_name -> inventory_product_id
|
||||
) -> OnboardingImportResult:
|
||||
"""Import sales data using created inventory items"""
|
||||
|
||||
try:
|
||||
logger.info("Starting sales import with inventory mapping",
|
||||
filename=filename, products_mapped=len(inventory_mapping), tenant_id=tenant_id)
|
||||
|
||||
# Parse the file again
|
||||
df = await self._parse_uploaded_file(file_content, filename)
|
||||
|
||||
# Add inventory product IDs to the data
|
||||
df_with_inventory = self._map_products_to_inventory(df, inventory_mapping)
|
||||
|
||||
# Import the sales data using the standard import service
|
||||
import_result = await self._import_sales_with_inventory_ids(
|
||||
df_with_inventory, tenant_id, user_id, filename
|
||||
)
|
||||
|
||||
result = OnboardingImportResult(
|
||||
total_products_found=len(inventory_mapping),
|
||||
inventory_suggestions=[], # Already processed
|
||||
business_model_analysis={}, # Already analyzed
|
||||
import_job_id=import_result['job_id'],
|
||||
status="import_complete",
|
||||
processed_rows=import_result['processed_rows'],
|
||||
successful_imports=import_result['successful_imports'],
|
||||
failed_imports=import_result['failed_imports'],
|
||||
errors=import_result.get('errors', []),
|
||||
warnings=import_result.get('warnings', [])
|
||||
)
|
||||
|
||||
logger.info("Sales import complete",
|
||||
successful=result.successful_imports,
|
||||
failed=result.failed_imports,
|
||||
tenant_id=tenant_id)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed sales import", error=str(e), tenant_id=tenant_id)
|
||||
raise
|
||||
|
||||
async def _parse_uploaded_file(self, file_content: bytes, filename: str) -> pd.DataFrame:
|
||||
"""Parse uploaded CSV/Excel file"""
|
||||
|
||||
try:
|
||||
if filename.endswith('.csv'):
|
||||
# Try different encodings
|
||||
for encoding in ['utf-8', 'latin-1', 'cp1252']:
|
||||
try:
|
||||
df = pd.read_csv(io.BytesIO(file_content), encoding=encoding)
|
||||
break
|
||||
except UnicodeDecodeError:
|
||||
continue
|
||||
else:
|
||||
raise ValueError("Could not decode CSV file with any supported encoding")
|
||||
|
||||
elif filename.endswith(('.xlsx', '.xls')):
|
||||
df = pd.read_excel(io.BytesIO(file_content))
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported file format: {filename}")
|
||||
|
||||
# Validate required columns exist
|
||||
required_columns = ['product_name', 'quantity_sold', 'revenue', 'date']
|
||||
missing_columns = [col for col in required_columns if col not in df.columns]
|
||||
|
||||
if missing_columns:
|
||||
raise ValueError(f"Missing required columns: {missing_columns}")
|
||||
|
||||
# Clean the data
|
||||
df = df.dropna(subset=['product_name', 'quantity_sold', 'revenue'])
|
||||
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
||||
df = df.dropna(subset=['date'])
|
||||
|
||||
logger.info("File parsed successfully", rows=len(df), columns=list(df.columns))
|
||||
return df
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to parse file", error=str(e), filename=filename)
|
||||
raise
|
||||
|
||||
def _analyze_products_from_sales(self, df: pd.DataFrame) -> Dict[str, Dict[str, Any]]:
|
||||
"""Extract and analyze products from sales data"""
|
||||
|
||||
# Group by product name and calculate metrics
|
||||
product_stats = df.groupby('product_name').agg({
|
||||
'quantity_sold': ['sum', 'mean', 'count'],
|
||||
'revenue': ['sum', 'mean'],
|
||||
'date': ['min', 'max']
|
||||
}).round(2)
|
||||
|
||||
# Flatten column names
|
||||
product_stats.columns = ['_'.join(col).strip() for col in product_stats.columns.values]
|
||||
|
||||
# Convert to dictionary with analysis
|
||||
products = {}
|
||||
for product_name in product_stats.index:
|
||||
stats = product_stats.loc[product_name]
|
||||
|
||||
products[product_name] = {
|
||||
'name': product_name,
|
||||
'total_quantity': float(stats['quantity_sold_sum']),
|
||||
'avg_quantity_per_sale': float(stats['quantity_sold_mean']),
|
||||
'total_sales_count': int(stats['quantity_sold_count']),
|
||||
'total_revenue': float(stats['revenue_sum']),
|
||||
'avg_revenue_per_sale': float(stats['revenue_mean']),
|
||||
'first_sale_date': stats['date_min'],
|
||||
'last_sale_date': stats['date_max'],
|
||||
'avg_unit_price': float(stats['revenue_sum'] / stats['quantity_sold_sum']) if stats['quantity_sold_sum'] > 0 else 0
|
||||
}
|
||||
|
||||
logger.info("Product analysis complete", unique_products=len(products))
|
||||
return products
|
||||
|
||||
async def _get_inventory_suggestions(
|
||||
self,
|
||||
product_analysis: Dict[str, Dict[str, Any]],
|
||||
tenant_id: UUID
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Get inventory suggestions from inventory service"""
|
||||
|
||||
try:
|
||||
# Call inventory service classification API
|
||||
product_names = list(product_analysis.keys())
|
||||
|
||||
suggestions = []
|
||||
|
||||
suggestions = await self.inventory_client.classify_products_batch(product_names)
|
||||
|
||||
return suggestions
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to get inventory suggestions", error=str(e))
|
||||
# Return fallback suggestions for all products
|
||||
return [self._create_fallback_suggestion(name, stats)
|
||||
for name, stats in product_analysis.items()]
|
||||
|
||||
def _create_fallback_suggestion(self, product_name: str, stats: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Create fallback suggestion when AI classification fails"""
|
||||
|
||||
return {
|
||||
'suggestion_id': str(uuid4()),
|
||||
'original_name': product_name,
|
||||
'suggested_name': product_name.title(),
|
||||
'product_type': 'finished_product',
|
||||
'category': 'other_products',
|
||||
'unit_of_measure': 'units',
|
||||
'confidence_score': 0.3,
|
||||
'estimated_shelf_life_days': 3,
|
||||
'requires_refrigeration': False,
|
||||
'requires_freezing': False,
|
||||
'is_seasonal': False,
|
||||
'notes': 'Fallback suggestion - requires manual review',
|
||||
'original_sales_data': stats
|
||||
}
|
||||
|
||||
def _analyze_business_model(self, suggestions: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
"""Analyze business model from suggestions"""
|
||||
|
||||
if not suggestions:
|
||||
return {'model': 'unknown', 'confidence': 0.0}
|
||||
|
||||
ingredient_count = sum(1 for s in suggestions if s.get('product_type') == 'ingredient')
|
||||
finished_count = sum(1 for s in suggestions if s.get('product_type') == 'finished_product')
|
||||
total = len(suggestions)
|
||||
|
||||
ingredient_ratio = ingredient_count / total if total > 0 else 0
|
||||
|
||||
if ingredient_ratio >= 0.7:
|
||||
model = 'production'
|
||||
elif ingredient_ratio <= 0.3:
|
||||
model = 'retail'
|
||||
else:
|
||||
model = 'hybrid'
|
||||
|
||||
confidence = max(abs(ingredient_ratio - 0.5) * 2, 0.1)
|
||||
|
||||
return {
|
||||
'model': model,
|
||||
'confidence': confidence,
|
||||
'ingredient_count': ingredient_count,
|
||||
'finished_product_count': finished_count,
|
||||
'ingredient_ratio': ingredient_ratio,
|
||||
'recommendations': self._get_model_recommendations(model)
|
||||
}
|
||||
|
||||
def _get_model_recommendations(self, model: str) -> List[str]:
|
||||
"""Get recommendations based on business model"""
|
||||
|
||||
recommendations = {
|
||||
'production': [
|
||||
'Set up supplier relationships for ingredients',
|
||||
'Configure recipe management',
|
||||
'Enable production cost tracking',
|
||||
'Set up ingredient inventory alerts'
|
||||
],
|
||||
'retail': [
|
||||
'Configure central baker relationships',
|
||||
'Set up delivery tracking',
|
||||
'Enable freshness monitoring',
|
||||
'Focus on sales forecasting'
|
||||
],
|
||||
'hybrid': [
|
||||
'Configure both production and retail features',
|
||||
'Set up flexible inventory management',
|
||||
'Enable comprehensive analytics'
|
||||
]
|
||||
}
|
||||
|
||||
return recommendations.get(model, [])
|
||||
|
||||
async def _create_import_job(
|
||||
self,
|
||||
filename: str,
|
||||
tenant_id: UUID,
|
||||
user_id: UUID,
|
||||
total_rows: int
|
||||
) -> UUID:
|
||||
"""Create import job for tracking"""
|
||||
|
||||
try:
|
||||
async with get_db_transaction() as db:
|
||||
from app.models.sales import SalesImportJob
|
||||
|
||||
job = SalesImportJob(
|
||||
id=uuid4(),
|
||||
tenant_id=tenant_id,
|
||||
filename=filename,
|
||||
import_type='onboarding_csv',
|
||||
status='analyzing',
|
||||
total_rows=total_rows,
|
||||
created_by=user_id
|
||||
)
|
||||
|
||||
db.add(job)
|
||||
await db.commit()
|
||||
|
||||
logger.info("Import job created", job_id=job.id, tenant_id=tenant_id)
|
||||
return job.id
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to create import job", error=str(e))
|
||||
return uuid4() # Return dummy ID if job creation fails
|
||||
|
||||
def _generate_warnings(self, df: pd.DataFrame, suggestions: List[Dict[str, Any]]) -> List[str]:
|
||||
"""Generate warnings about data quality"""
|
||||
|
||||
warnings = []
|
||||
|
||||
# Check for low confidence suggestions
|
||||
low_confidence = [s for s in suggestions if s.get('confidence_score', 1.0) < 0.6]
|
||||
if low_confidence:
|
||||
warnings.append(f"{len(low_confidence)} products have low classification confidence and may need manual review")
|
||||
|
||||
# Check for missing data
|
||||
missing_prices = df[df['revenue'].isna() | (df['revenue'] == 0)].shape[0]
|
||||
if missing_prices > 0:
|
||||
warnings.append(f"{missing_prices} sales records have missing or zero revenue")
|
||||
|
||||
# Check for old data
|
||||
latest_date = df['date'].max()
|
||||
if pd.Timestamp.now() - latest_date > pd.Timedelta(days=90):
|
||||
warnings.append("Sales data appears to be more than 90 days old")
|
||||
|
||||
return warnings
|
||||
|
||||
# Additional helper methods would be implemented here...
|
||||
# _find_suggestion_by_id, _apply_modifications, _create_inventory_item, etc.
|
||||
|
||||
|
||||
# Dependency injection
|
||||
def get_onboarding_import_service() -> OnboardingImportService:
|
||||
"""Get onboarding import service instance"""
|
||||
return OnboardingImportService()
|
||||
@@ -1,391 +0,0 @@
|
||||
# Enhanced Inter-Service Communication System
|
||||
|
||||
This directory contains the enhanced inter-service communication system that integrates with the new repository pattern architecture. The system provides circuit breakers, caching, monitoring, and event tracking for all service-to-service communications.
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Base Components
|
||||
|
||||
1. **BaseServiceClient** - Foundation class providing authentication, retries, and basic HTTP operations
|
||||
2. **EnhancedServiceClient** - Adds circuit breaker, caching, and monitoring capabilities
|
||||
3. **ServiceRegistry** - Central registry for managing all enhanced service clients
|
||||
|
||||
### Enhanced Service Clients
|
||||
|
||||
Each service has a specialized enhanced client:
|
||||
|
||||
- **SalesServiceClient** - Sales data, products, data import with optimized caching
|
||||
- **ExternalServiceClient** - Weather and traffic data collection with external API integration
|
||||
- **EnhancedAuthServiceClient** - Authentication, user management, permissions with security focus
|
||||
- **EnhancedTrainingServiceClient** - ML training, model management, deployment with pipeline monitoring
|
||||
- **EnhancedForecastingServiceClient** - Forecasting, predictions, scenarios with analytics
|
||||
- **EnhancedTenantServiceClient** - Tenant management, memberships, organization features
|
||||
- **EnhancedNotificationServiceClient** - Notifications, templates, delivery tracking
|
||||
|
||||
## Key Features
|
||||
|
||||
### Circuit Breaker Pattern
|
||||
- **States**: Closed (normal), Open (failing), Half-Open (testing recovery)
|
||||
- **Configuration**: Failure threshold, recovery timeout, success threshold
|
||||
- **Monitoring**: State changes tracked and logged
|
||||
|
||||
### Intelligent Caching
|
||||
- **TTL-based**: Different cache durations for different data types
|
||||
- **Invalidation**: Pattern-based cache invalidation on updates
|
||||
- **Statistics**: Hit/miss ratios and performance metrics
|
||||
- **Manual Control**: Clear specific cache patterns when needed
|
||||
|
||||
### Event Integration
|
||||
- **Repository Events**: Entity created/updated/deleted events
|
||||
- **Correlation IDs**: Track operations across services
|
||||
- **Metadata**: Rich event metadata for debugging and monitoring
|
||||
|
||||
### Monitoring & Metrics
|
||||
- **Request Metrics**: Success/failure rates, latencies
|
||||
- **Cache Metrics**: Hit rates, entry counts
|
||||
- **Circuit Breaker Metrics**: State changes, failure counts
|
||||
- **Health Checks**: Per-service and aggregate health status
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Usage with Service Registry
|
||||
|
||||
```python
|
||||
from shared.clients.enhanced_service_client import ServiceRegistry
|
||||
from shared.config.base import BaseServiceSettings
|
||||
|
||||
# Initialize registry
|
||||
config = BaseServiceSettings()
|
||||
registry = ServiceRegistry(config, calling_service="forecasting")
|
||||
|
||||
# Get enhanced clients
|
||||
data_client = registry.get_data_client()
|
||||
auth_client = registry.get_auth_client()
|
||||
training_client = registry.get_training_client()
|
||||
|
||||
# Use with full features
|
||||
sales_data = await data_client.get_all_sales_data_with_monitoring(
|
||||
tenant_id="tenant-123",
|
||||
start_date="2024-01-01",
|
||||
end_date="2024-12-31",
|
||||
correlation_id="forecast-job-456"
|
||||
)
|
||||
```
|
||||
|
||||
### Data Service Operations
|
||||
|
||||
```python
|
||||
# Get sales data with intelligent caching
|
||||
sales_data = await data_client.get_sales_data_cached(
|
||||
tenant_id="tenant-123",
|
||||
start_date="2024-01-01",
|
||||
end_date="2024-01-31",
|
||||
aggregation="daily"
|
||||
)
|
||||
|
||||
# Upload sales data with cache invalidation and events
|
||||
result = await data_client.upload_sales_data_with_events(
|
||||
tenant_id="tenant-123",
|
||||
sales_data=sales_records,
|
||||
correlation_id="data-import-789"
|
||||
)
|
||||
|
||||
# Get weather data with caching (30 min TTL)
|
||||
weather_data = await data_client.get_weather_historical_cached(
|
||||
tenant_id="tenant-123",
|
||||
start_date="2024-01-01",
|
||||
end_date="2024-01-31"
|
||||
)
|
||||
```
|
||||
|
||||
### Authentication & User Management
|
||||
|
||||
```python
|
||||
# Authenticate with security monitoring
|
||||
auth_result = await auth_client.authenticate_user_cached(
|
||||
email="user@example.com",
|
||||
password="password"
|
||||
)
|
||||
|
||||
# Check permissions with caching
|
||||
has_access = await auth_client.check_user_permissions_cached(
|
||||
user_id="user-123",
|
||||
tenant_id="tenant-456",
|
||||
resource="sales_data",
|
||||
action="read"
|
||||
)
|
||||
|
||||
# Create user with events
|
||||
user = await auth_client.create_user_with_events(
|
||||
user_data={
|
||||
"email": "new@example.com",
|
||||
"name": "New User",
|
||||
"role": "analyst"
|
||||
},
|
||||
tenant_id="tenant-123",
|
||||
correlation_id="user-creation-789"
|
||||
)
|
||||
```
|
||||
|
||||
### Training & ML Operations
|
||||
|
||||
```python
|
||||
# Create training job with monitoring
|
||||
job = await training_client.create_training_job_with_monitoring(
|
||||
tenant_id="tenant-123",
|
||||
include_weather=True,
|
||||
include_traffic=False,
|
||||
min_data_points=30,
|
||||
correlation_id="training-pipeline-456"
|
||||
)
|
||||
|
||||
# Get active model with caching
|
||||
model = await training_client.get_active_model_for_product_cached(
|
||||
tenant_id="tenant-123",
|
||||
product_name="croissants"
|
||||
)
|
||||
|
||||
# Deploy model with events
|
||||
deployment = await training_client.deploy_model_with_events(
|
||||
tenant_id="tenant-123",
|
||||
model_id="model-789",
|
||||
correlation_id="deployment-123"
|
||||
)
|
||||
|
||||
# Get pipeline status
|
||||
status = await training_client.get_training_pipeline_status("tenant-123")
|
||||
```
|
||||
|
||||
### Forecasting & Predictions
|
||||
|
||||
```python
|
||||
# Create forecast with monitoring
|
||||
forecast = await forecasting_client.create_forecast_with_monitoring(
|
||||
tenant_id="tenant-123",
|
||||
model_id="model-456",
|
||||
start_date="2024-02-01",
|
||||
end_date="2024-02-29",
|
||||
correlation_id="forecast-creation-789"
|
||||
)
|
||||
|
||||
# Get predictions with caching
|
||||
predictions = await forecasting_client.get_predictions_cached(
|
||||
tenant_id="tenant-123",
|
||||
forecast_id="forecast-456",
|
||||
start_date="2024-02-01",
|
||||
end_date="2024-02-07"
|
||||
)
|
||||
|
||||
# Real-time prediction with caching
|
||||
prediction = await forecasting_client.create_realtime_prediction_with_monitoring(
|
||||
tenant_id="tenant-123",
|
||||
model_id="model-456",
|
||||
target_date="2024-02-01",
|
||||
features={"temperature": 20, "day_of_week": 1},
|
||||
correlation_id="realtime-pred-123"
|
||||
)
|
||||
|
||||
# Get forecasting dashboard
|
||||
dashboard = await forecasting_client.get_forecasting_dashboard("tenant-123")
|
||||
```
|
||||
|
||||
### Tenant Management
|
||||
|
||||
```python
|
||||
# Create tenant with monitoring
|
||||
tenant = await tenant_client.create_tenant_with_monitoring(
|
||||
name="New Bakery Chain",
|
||||
owner_id="user-123",
|
||||
description="Multi-location bakery chain",
|
||||
correlation_id="tenant-creation-456"
|
||||
)
|
||||
|
||||
# Add member with events
|
||||
membership = await tenant_client.add_tenant_member_with_events(
|
||||
tenant_id="tenant-123",
|
||||
user_id="user-456",
|
||||
role="manager",
|
||||
correlation_id="member-add-789"
|
||||
)
|
||||
|
||||
# Get tenant analytics
|
||||
analytics = await tenant_client.get_tenant_analytics("tenant-123")
|
||||
```
|
||||
|
||||
### Notification Management
|
||||
|
||||
```python
|
||||
# Send notification with monitoring
|
||||
notification = await notification_client.send_notification_with_monitoring(
|
||||
recipient_id="user-123",
|
||||
notification_type="forecast_ready",
|
||||
title="Forecast Complete",
|
||||
message="Your weekly forecast is ready for review",
|
||||
tenant_id="tenant-456",
|
||||
priority="high",
|
||||
channels=["email", "in_app"],
|
||||
correlation_id="forecast-notification-789"
|
||||
)
|
||||
|
||||
# Send bulk notification
|
||||
bulk_result = await notification_client.send_bulk_notification_with_monitoring(
|
||||
recipients=["user-123", "user-456", "user-789"],
|
||||
notification_type="system_update",
|
||||
title="System Maintenance",
|
||||
message="Scheduled maintenance tonight at 2 AM",
|
||||
priority="normal",
|
||||
correlation_id="maintenance-notification-123"
|
||||
)
|
||||
|
||||
# Get delivery analytics
|
||||
analytics = await notification_client.get_delivery_analytics(
|
||||
tenant_id="tenant-123",
|
||||
start_date="2024-01-01",
|
||||
end_date="2024-01-31"
|
||||
)
|
||||
```
|
||||
|
||||
## Health Monitoring
|
||||
|
||||
### Individual Service Health
|
||||
|
||||
```python
|
||||
# Get specific service health
|
||||
data_health = data_client.get_data_service_health()
|
||||
auth_health = auth_client.get_auth_service_health()
|
||||
training_health = training_client.get_training_service_health()
|
||||
|
||||
# Health includes:
|
||||
# - Circuit breaker status
|
||||
# - Cache statistics and configuration
|
||||
# - Service-specific features
|
||||
# - Supported endpoints
|
||||
```
|
||||
|
||||
### Registry-Level Health
|
||||
|
||||
```python
|
||||
# Get all service health status
|
||||
all_health = registry.get_all_health_status()
|
||||
|
||||
# Get aggregate metrics
|
||||
metrics = registry.get_aggregate_metrics()
|
||||
# Returns:
|
||||
# - Total cache hits/misses and hit rate
|
||||
# - Circuit breaker states for all services
|
||||
# - Count of healthy vs total services
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Cache TTL Configuration
|
||||
|
||||
Each enhanced client has optimized cache TTL values:
|
||||
|
||||
```python
|
||||
# Data Service
|
||||
sales_cache_ttl = 600 # 10 minutes
|
||||
weather_cache_ttl = 1800 # 30 minutes
|
||||
traffic_cache_ttl = 3600 # 1 hour
|
||||
product_cache_ttl = 300 # 5 minutes
|
||||
|
||||
# Auth Service
|
||||
user_cache_ttl = 300 # 5 minutes
|
||||
token_cache_ttl = 60 # 1 minute
|
||||
permission_cache_ttl = 900 # 15 minutes
|
||||
|
||||
# Training Service
|
||||
job_cache_ttl = 180 # 3 minutes
|
||||
model_cache_ttl = 600 # 10 minutes
|
||||
metrics_cache_ttl = 300 # 5 minutes
|
||||
|
||||
# And so on...
|
||||
```
|
||||
|
||||
### Circuit Breaker Configuration
|
||||
|
||||
```python
|
||||
CircuitBreakerConfig(
|
||||
failure_threshold=5, # Failures before opening
|
||||
recovery_timeout=60, # Seconds before testing recovery
|
||||
success_threshold=2, # Successes needed to close
|
||||
timeout=30 # Request timeout in seconds
|
||||
)
|
||||
```
|
||||
|
||||
## Event System Integration
|
||||
|
||||
All enhanced clients integrate with the enhanced event system:
|
||||
|
||||
### Event Types
|
||||
- **EntityCreatedEvent** - When entities are created
|
||||
- **EntityUpdatedEvent** - When entities are modified
|
||||
- **EntityDeletedEvent** - When entities are removed
|
||||
|
||||
### Event Metadata
|
||||
- **correlation_id** - Track operations across services
|
||||
- **source_service** - Service that generated the event
|
||||
- **destination_service** - Target service
|
||||
- **tenant_id** - Tenant context
|
||||
- **user_id** - User context
|
||||
- **tags** - Additional metadata
|
||||
|
||||
### Usage in Enhanced Clients
|
||||
Events are automatically published for:
|
||||
- Data uploads and modifications
|
||||
- User creation/updates/deletion
|
||||
- Training job lifecycle
|
||||
- Model deployments
|
||||
- Forecast creation
|
||||
- Tenant management operations
|
||||
- Notification delivery
|
||||
|
||||
## Error Handling & Resilience
|
||||
|
||||
### Circuit Breaker Protection
|
||||
- Automatically stops requests when services are failing
|
||||
- Provides fallback to cached data when available
|
||||
- Gradually tests service recovery
|
||||
|
||||
### Retry Logic
|
||||
- Exponential backoff for transient failures
|
||||
- Configurable retry counts and delays
|
||||
- Authentication token refresh on 401 errors
|
||||
|
||||
### Cache Fallbacks
|
||||
- Returns cached data when services are unavailable
|
||||
- Graceful degradation with stale data warnings
|
||||
- Manual cache invalidation for data consistency
|
||||
|
||||
## Integration with Repository Pattern
|
||||
|
||||
The enhanced clients seamlessly integrate with the new repository pattern:
|
||||
|
||||
### Service Layer Integration
|
||||
```python
|
||||
class ForecastingService:
|
||||
def __init__(self,
|
||||
forecast_repository: ForecastRepository,
|
||||
service_registry: ServiceRegistry):
|
||||
self.forecast_repository = forecast_repository
|
||||
self.data_client = service_registry.get_data_client()
|
||||
self.training_client = service_registry.get_training_client()
|
||||
|
||||
async def create_forecast(self, tenant_id: str, model_id: str):
|
||||
# Get data through enhanced client
|
||||
sales_data = await self.data_client.get_all_sales_data_with_monitoring(
|
||||
tenant_id=tenant_id,
|
||||
correlation_id=f"forecast_data_{datetime.utcnow().isoformat()}"
|
||||
)
|
||||
|
||||
# Use repository for database operations
|
||||
forecast = await self.forecast_repository.create({
|
||||
"tenant_id": tenant_id,
|
||||
"model_id": model_id,
|
||||
"status": "pending"
|
||||
})
|
||||
|
||||
return forecast
|
||||
```
|
||||
|
||||
This completes the comprehensive enhanced inter-service communication system that integrates seamlessly with the new repository pattern architecture, providing resilience, monitoring, and advanced features for all service interactions.
|
||||
347
shared/clients/inventory_client.py
Normal file
347
shared/clients/inventory_client.py
Normal file
@@ -0,0 +1,347 @@
|
||||
# shared/clients/inventory_client.py
|
||||
"""
|
||||
Inventory Service Client - Inter-service communication
|
||||
Handles communication with the inventory service for all other services
|
||||
"""
|
||||
|
||||
import structlog
|
||||
from typing import Dict, Any, List, Optional, Union
|
||||
from uuid import UUID
|
||||
|
||||
from shared.clients.base_service_client import BaseServiceClient
|
||||
from shared.config.base import BaseServiceSettings
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class InventoryServiceClient(BaseServiceClient):
|
||||
"""Client for communicating with the inventory service via gateway"""
|
||||
|
||||
def __init__(self, config: BaseServiceSettings):
|
||||
super().__init__("inventory", config)
|
||||
|
||||
def get_service_base_path(self) -> str:
|
||||
"""Return the base path for inventory service APIs"""
|
||||
return "/api/v1"
|
||||
|
||||
# ================================================================
|
||||
# INGREDIENT MANAGEMENT
|
||||
# ================================================================
|
||||
|
||||
async def get_ingredient_by_id(self, ingredient_id: UUID, tenant_id: str) -> Optional[Dict[str, Any]]:
|
||||
"""Get ingredient details by ID"""
|
||||
try:
|
||||
result = await self.get(f"ingredients/{ingredient_id}", tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Retrieved ingredient from inventory service",
|
||||
ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error fetching ingredient by ID",
|
||||
error=str(e), ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def search_ingredients(
|
||||
self,
|
||||
tenant_id: str,
|
||||
search: Optional[str] = None,
|
||||
category: Optional[str] = None,
|
||||
is_active: Optional[bool] = None,
|
||||
skip: int = 0,
|
||||
limit: int = 100
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Search ingredients with filters"""
|
||||
try:
|
||||
params = {
|
||||
"skip": skip,
|
||||
"limit": limit
|
||||
}
|
||||
|
||||
if search:
|
||||
params["search"] = search
|
||||
if category:
|
||||
params["category"] = category
|
||||
if is_active is not None:
|
||||
params["is_active"] = is_active
|
||||
|
||||
result = await self.get("ingredients", tenant_id=tenant_id, params=params)
|
||||
ingredients = result if isinstance(result, list) else []
|
||||
|
||||
logger.info("Searched ingredients in inventory service",
|
||||
search_term=search, count=len(ingredients), tenant_id=tenant_id)
|
||||
return ingredients
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error searching ingredients",
|
||||
error=str(e), search=search, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
async def get_all_ingredients(self, tenant_id: str, is_active: Optional[bool] = True) -> List[Dict[str, Any]]:
|
||||
"""Get all ingredients for a tenant (paginated)"""
|
||||
try:
|
||||
params = {}
|
||||
if is_active is not None:
|
||||
params["is_active"] = is_active
|
||||
|
||||
ingredients = await self.get_paginated("ingredients", tenant_id=tenant_id, params=params)
|
||||
|
||||
logger.info("Retrieved all ingredients from inventory service",
|
||||
count=len(ingredients), tenant_id=tenant_id)
|
||||
return ingredients
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching all ingredients",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
async def create_ingredient(self, ingredient_data: Dict[str, Any], tenant_id: str) -> Optional[Dict[str, Any]]:
|
||||
"""Create a new ingredient"""
|
||||
try:
|
||||
result = await self.post("ingredients", data=ingredient_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Created ingredient in inventory service",
|
||||
ingredient_name=ingredient_data.get('name'), tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error creating ingredient",
|
||||
error=str(e), ingredient_data=ingredient_data, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def update_ingredient(
|
||||
self,
|
||||
ingredient_id: UUID,
|
||||
ingredient_data: Dict[str, Any],
|
||||
tenant_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Update an existing ingredient"""
|
||||
try:
|
||||
result = await self.put(f"ingredients/{ingredient_id}", data=ingredient_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Updated ingredient in inventory service",
|
||||
ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error updating ingredient",
|
||||
error=str(e), ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def delete_ingredient(self, ingredient_id: UUID, tenant_id: str) -> bool:
|
||||
"""Delete (deactivate) an ingredient"""
|
||||
try:
|
||||
result = await self.delete(f"ingredients/{ingredient_id}", tenant_id=tenant_id)
|
||||
success = result is not None
|
||||
if success:
|
||||
logger.info("Deleted ingredient in inventory service",
|
||||
ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return success
|
||||
except Exception as e:
|
||||
logger.error("Error deleting ingredient",
|
||||
error=str(e), ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return False
|
||||
|
||||
async def get_ingredient_stock(
|
||||
self,
|
||||
ingredient_id: UUID,
|
||||
tenant_id: str,
|
||||
include_unavailable: bool = False
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Get stock entries for an ingredient"""
|
||||
try:
|
||||
params = {}
|
||||
if include_unavailable:
|
||||
params["include_unavailable"] = include_unavailable
|
||||
|
||||
result = await self.get(f"ingredients/{ingredient_id}/stock", tenant_id=tenant_id, params=params)
|
||||
stock_entries = result if isinstance(result, list) else []
|
||||
|
||||
logger.info("Retrieved ingredient stock from inventory service",
|
||||
ingredient_id=ingredient_id, stock_count=len(stock_entries), tenant_id=tenant_id)
|
||||
return stock_entries
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching ingredient stock",
|
||||
error=str(e), ingredient_id=ingredient_id, tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
# ================================================================
|
||||
# STOCK MANAGEMENT
|
||||
# ================================================================
|
||||
|
||||
async def get_stock_levels(self, tenant_id: str, ingredient_ids: Optional[List[UUID]] = None) -> List[Dict[str, Any]]:
|
||||
"""Get current stock levels"""
|
||||
try:
|
||||
params = {}
|
||||
if ingredient_ids:
|
||||
params["ingredient_ids"] = [str(id) for id in ingredient_ids]
|
||||
|
||||
result = await self.get("stock", tenant_id=tenant_id, params=params)
|
||||
stock_levels = result if isinstance(result, list) else []
|
||||
|
||||
logger.info("Retrieved stock levels from inventory service",
|
||||
count=len(stock_levels), tenant_id=tenant_id)
|
||||
return stock_levels
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching stock levels",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
async def get_low_stock_alerts(self, tenant_id: str) -> List[Dict[str, Any]]:
|
||||
"""Get low stock alerts"""
|
||||
try:
|
||||
result = await self.get("alerts", tenant_id=tenant_id, params={"type": "low_stock"})
|
||||
alerts = result if isinstance(result, list) else []
|
||||
|
||||
logger.info("Retrieved low stock alerts from inventory service",
|
||||
count=len(alerts), tenant_id=tenant_id)
|
||||
return alerts
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error fetching low stock alerts",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return []
|
||||
|
||||
async def consume_stock(
|
||||
self,
|
||||
consumption_data: Dict[str, Any],
|
||||
tenant_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Record stock consumption"""
|
||||
try:
|
||||
result = await self.post("stock/consume", data=consumption_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Recorded stock consumption",
|
||||
tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error recording stock consumption",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def receive_stock(
|
||||
self,
|
||||
receipt_data: Dict[str, Any],
|
||||
tenant_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Record stock receipt"""
|
||||
try:
|
||||
result = await self.post("stock/receive", data=receipt_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Recorded stock receipt",
|
||||
tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error recording stock receipt",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
# ================================================================
|
||||
# PRODUCT CLASSIFICATION (for onboarding)
|
||||
# ================================================================
|
||||
|
||||
async def classify_product(
|
||||
self,
|
||||
product_name: str,
|
||||
sales_volume: Optional[float],
|
||||
tenant_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Classify a single product for inventory creation"""
|
||||
try:
|
||||
classification_data = {
|
||||
"product_name": product_name,
|
||||
"sales_volume": sales_volume
|
||||
}
|
||||
|
||||
result = await self.post("inventory/classify-product", data=classification_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Classified product",
|
||||
product=product_name,
|
||||
classification=result.get('product_type'),
|
||||
confidence=result.get('confidence_score'),
|
||||
tenant_id=tenant_id)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error classifying product",
|
||||
error=str(e), product=product_name, tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def classify_products_batch(
|
||||
self,
|
||||
products: List[Dict[str, Any]],
|
||||
tenant_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Classify multiple products for onboarding automation"""
|
||||
try:
|
||||
classification_data = {
|
||||
"products": products
|
||||
}
|
||||
|
||||
result = await self.post("inventory/classify-products-batch", data=classification_data, tenant_id=tenant_id)
|
||||
if result:
|
||||
suggestions = result.get('suggestions', [])
|
||||
business_model = result.get('business_model_analysis', {}).get('model', 'unknown')
|
||||
|
||||
logger.info("Batch classification complete",
|
||||
total_products=len(suggestions),
|
||||
business_model=business_model,
|
||||
tenant_id=tenant_id)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error in batch classification",
|
||||
error=str(e), products_count=len(products), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
# ================================================================
|
||||
# DASHBOARD AND ANALYTICS
|
||||
# ================================================================
|
||||
|
||||
async def get_inventory_dashboard(self, tenant_id: str) -> Optional[Dict[str, Any]]:
|
||||
"""Get inventory dashboard data"""
|
||||
try:
|
||||
result = await self.get("dashboard", tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Retrieved inventory dashboard data", tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error fetching inventory dashboard",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
async def get_inventory_summary(self, tenant_id: str) -> Optional[Dict[str, Any]]:
|
||||
"""Get inventory summary statistics"""
|
||||
try:
|
||||
result = await self.get("dashboard/summary", tenant_id=tenant_id)
|
||||
if result:
|
||||
logger.info("Retrieved inventory summary", tenant_id=tenant_id)
|
||||
return result
|
||||
except Exception as e:
|
||||
logger.error("Error fetching inventory summary",
|
||||
error=str(e), tenant_id=tenant_id)
|
||||
return None
|
||||
|
||||
# ================================================================
|
||||
# UTILITY METHODS
|
||||
# ================================================================
|
||||
|
||||
async def health_check(self) -> bool:
|
||||
"""Check if inventory service is healthy"""
|
||||
try:
|
||||
result = await self.get("../health") # Health endpoint is not tenant-scoped
|
||||
return result is not None
|
||||
except Exception as e:
|
||||
logger.error("Inventory service health check failed", error=str(e))
|
||||
return False
|
||||
|
||||
|
||||
# Factory function for dependency injection
|
||||
def create_inventory_client(config: BaseServiceSettings) -> InventoryServiceClient:
|
||||
"""Create inventory service client instance"""
|
||||
return InventoryServiceClient(config)
|
||||
|
||||
|
||||
# Convenience function for quick access (requires config to be passed)
|
||||
async def get_inventory_client(config: BaseServiceSettings) -> InventoryServiceClient:
|
||||
"""Get inventory service client instance"""
|
||||
return create_inventory_client(config)
|
||||
Reference in New Issue
Block a user