Start fixing forecast service 15

This commit is contained in:
Urtzi Alfaro
2025-07-30 00:23:05 +02:00
parent 2d1ce2d523
commit 1d05e125a5
5 changed files with 677 additions and 382 deletions

View File

@@ -1,9 +1,7 @@
# ================================================================
# services/forecasting/app/services/prediction_service.py
# ================================================================
# services/forecasting/app/services/prediction_service.py - FIXED SEASON FEATURE
"""
Prediction service for loading models and generating predictions
Handles the actual ML prediction logic
FIXED: Added missing 'season' feature that matches training service exactly
"""
import structlog
@@ -52,46 +50,51 @@ class PredictionService:
if not model:
raise ValueError(f"Model {model_id} not found or failed to load")
# Prepare features for Prophet
df = self._prepare_prophet_features(features)
# Prepare features for Prophet model
prophet_df = self._prepare_prophet_features(features)
# Generate prediction
forecast = model.predict(df)
forecast = model.predict(prophet_df)
# Extract prediction results
if len(forecast) > 0:
row = forecast.iloc[0]
result = {
"demand": float(row['yhat']),
"lower_bound": float(row[f'yhat_lower']),
"upper_bound": float(row[f'yhat_upper']),
"trend": float(row.get('trend', 0)),
"seasonal": float(row.get('seasonal', 0)),
"holiday": float(row.get('holidays', 0))
}
else:
raise ValueError("No prediction generated from model")
# Extract prediction values
prediction_value = float(forecast['yhat'].iloc[0])
lower_bound = float(forecast['yhat_lower'].iloc[0])
upper_bound = float(forecast['yhat_upper'].iloc[0])
# Update metrics
# Calculate confidence interval
confidence_interval = upper_bound - lower_bound
result = {
"prediction": max(0, prediction_value), # Ensure non-negative
"lower_bound": max(0, lower_bound),
"upper_bound": max(0, upper_bound),
"confidence_interval": confidence_interval,
"confidence_level": confidence_level
}
# Record metrics
processing_time = (datetime.now() - start_time).total_seconds()
metrics.histogram_observe("forecast_processing_time_seconds", processing_time)
metrics.register_histogram("prediction_processing_time_seconds", processing_time)
metrics.increment_counter("predictions_served_total")
logger.info("Prediction generated successfully",
model_id=model_id,
predicted_demand=result["demand"],
processing_time_ms=int(processing_time * 1000))
prediction=result["prediction"],
processing_time=processing_time)
return result
except Exception as e:
logger.error("Error generating prediction",
model_id=model_id,
error=str(e))
error=str(e),
model_id=model_id)
metrics.increment_counter("prediction_errors_total")
raise
async def _load_model(self, model_id: str, model_path: str):
"""Load model from shared volume using joblib"""
"""Load model from file with improved validation and error handling"""
# Enhanced model file validation
if not await self._validate_model_file(model_path):
logger.error(f"Model file not valid: {model_path}")
return None
@@ -104,12 +107,16 @@ class PredictionService:
try:
if os.path.exists(model_path):
# ✅ FIX: Use joblib.load instead of pickle.load
model = joblib.load(model_path)
# Try multiple loading methods for compatibility
model = await self._load_model_safely(model_path)
if model is None:
logger.error(f"Failed to load model from: {model_path}")
return None
# Cache the model
self.model_cache[model_id] = (model, datetime.now())
logger.info(f"Model loaded from shared volume: {model_path}")
logger.info(f"Model loaded successfully: {model_path}")
return model
else:
logger.error(f"Model file not found: {model_path}")
@@ -118,9 +125,44 @@ class PredictionService:
except Exception as e:
logger.error(f"Error loading model: {e}")
return None
async def _load_model_safely(self, model_path: str):
"""Safely load model with multiple fallback methods"""
# Method 1: Try joblib first (recommended for sklearn/Prophet models)
try:
logger.debug(f"Attempting to load model with joblib: {model_path}")
model = joblib.load(model_path)
logger.info(f"Model loaded successfully with joblib")
return model
except Exception as e:
logger.warning(f"Joblib loading failed: {e}")
# Method 2: Try pickle as fallback
try:
logger.debug(f"Attempting to load model with pickle: {model_path}")
with open(model_path, 'rb') as f:
model = pickle.load(f)
logger.info(f"Model loaded successfully with pickle")
return model
except Exception as e:
logger.warning(f"Pickle loading failed: {e}")
# Method 3: Try pandas pickle (for Prophet models saved with pandas)
try:
logger.debug(f"Attempting to load model with pandas: {model_path}")
import pandas as pd
model = pd.read_pickle(model_path)
logger.info(f"Model loaded successfully with pandas")
return model
except Exception as e:
logger.warning(f"Pandas loading failed: {e}")
logger.error(f"All loading methods failed for: {model_path}")
return None
async def _validate_model_file(self, model_path: str) -> bool:
"""Validate model file before loading"""
"""Enhanced model file validation"""
try:
if not os.path.exists(model_path):
logger.error(f"Model file not found: {model_path}")
@@ -132,15 +174,34 @@ class PredictionService:
logger.warning(f"Model file too small ({file_size} bytes): {model_path}")
return False
# Try to peek at file header to detect format
with open(model_path, 'rb') as f:
header = f.read(8)
# More comprehensive file format detection
try:
with open(model_path, 'rb') as f:
header = f.read(16) # Read more bytes for better detection
# Check for various pickle/joblib signatures
valid_signatures = [
b']\x93PICKLE', # Joblib
b'\x80\x03', # Pickle protocol 3
b'\x80\x04', # Pickle protocol 4
b'\x80\x05', # Pickle protocol 5
b'}\x94', # Newer joblib format
b'}\x93', # Alternative joblib format
]
is_valid_format = any(header.startswith(sig) for sig in valid_signatures)
if not is_valid_format:
# Log header for debugging but don't fail validation
logger.warning(f"Unrecognized file header: {header[:8]} for {model_path}")
logger.info("Proceeding with loading attempt despite unrecognized header")
# Return True to allow loading attempt - some valid files may have different headers
return True
# Check for joblib signature
if header.startswith(b']\x93PICKLE') or header.startswith(b'\x80\x03'):
return True
else:
logger.warning(f"Unrecognized file format: {model_path}")
except Exception as e:
logger.error(f"Error reading model file header: {e}")
return False
except Exception as e:
@@ -148,7 +209,7 @@ class PredictionService:
return False
def _prepare_prophet_features(self, features: Dict[str, Any]) -> pd.DataFrame:
"""Convert features to Prophet-compatible DataFrame"""
"""Convert features to Prophet-compatible DataFrame - FIXED TO MATCH TRAINING"""
try:
# Create base DataFrame with required 'ds' column
@@ -156,15 +217,19 @@ class PredictionService:
'ds': [pd.to_datetime(features['date'])]
})
# Add numeric features
# Add numeric features with safe conversion
numeric_features = [
'temperature', 'precipitation', 'humidity', 'wind_speed',
'traffic_volume', 'pedestrian_count'
'traffic_volume', 'pedestrian_count', 'pressure' # ✅ FIX: Added pressure
]
for feature in numeric_features:
if feature in features and features[feature] is not None:
df[feature] = float(features[feature])
try:
df[feature] = float(features[feature])
except (ValueError, TypeError):
logger.warning(f"Could not convert {feature} to float: {features[feature]}")
df[feature] = 0.0
else:
df[feature] = 0.0
@@ -179,9 +244,12 @@ class PredictionService:
df['quarter'] = int(forecast_date.quarter)
df['week_of_year'] = int(forecast_date.isocalendar().week)
# Bakery-specific temporal features (match training exactly!)
df['is_weekend'] = int(day_of_week >= 5) # Saturday=5, Sunday=6
df['is_monday'] = int(day_of_week == 0) # ✅ FIX: Add missing is_monday
# ✅ FIX: Add the missing 'season' feature that matches training exactly
df['season'] = self._get_season(forecast_date.month)
# Bakery-specific temporal features
df['is_weekend'] = int(day_of_week >= 5)
df['is_monday'] = int(day_of_week == 0)
df['is_tuesday'] = int(day_of_week == 1)
df['is_wednesday'] = int(day_of_week == 2)
df['is_thursday'] = int(day_of_week == 3)
@@ -189,6 +257,15 @@ class PredictionService:
df['is_saturday'] = int(day_of_week == 5)
df['is_sunday'] = int(day_of_week == 6)
# Season-based features (match training service)
df['is_spring'] = int(df['season'].iloc[0] == 2)
df['is_summer'] = int(df['season'].iloc[0] == 3)
df['is_autumn'] = int(df['season'].iloc[0] == 4)
df['is_winter'] = int(df['season'].iloc[0] == 1)
# Holiday features
df['is_holiday'] = int(features.get('is_holiday', False))
# Month-based features
df['is_january'] = int(forecast_date.month == 1)
df['is_february'] = int(forecast_date.month == 2)
@@ -203,35 +280,169 @@ class PredictionService:
df['is_november'] = int(forecast_date.month == 11)
df['is_december'] = int(forecast_date.month == 12)
# Season-based features
season = ((forecast_date.month % 12) + 3) // 3 # 1=spring, 2=summer, 3=autumn, 4=winter
df['is_spring'] = int(season == 1)
df['is_summer'] = int(season == 2)
df['is_autumn'] = int(season == 3)
df['is_winter'] = int(season == 4)
# Business context features
df['is_holiday'] = int(features.get('is_holiday', False))
# Business type encoding
business_type = features.get('business_type', 'individual')
df['is_central_workshop'] = int(business_type == 'central_workshop')
df['is_individual_bakery'] = int(business_type == 'individual')
# Special day features (these might be in training data)
# Additional features that might be in training data
df['is_month_start'] = int(forecast_date.day <= 3)
df['is_month_end'] = int(forecast_date.day >= 28)
df['is_quarter_start'] = int(forecast_date.month in [1, 4, 7, 10] and forecast_date.day <= 7)
df['is_quarter_end'] = int(forecast_date.month in [3, 6, 9, 12] and forecast_date.day >= 25)
logger.debug("Prepared Prophet features",
features_count=len(df.columns),
# Business context features
df['is_school_holiday'] = int(self._is_school_holiday(forecast_date))
df['is_payday_period'] = int((forecast_date.day <= 5) or (forecast_date.day >= 25))
# Working day features
df['is_working_day'] = int(day_of_week < 5) # Monday-Friday
df['is_peak_bakery_day'] = int(day_of_week in [4, 5, 6]) # Friday, Saturday, Sunday
# Seasonal demand patterns
df['is_high_demand_month'] = int(forecast_date.month in [6, 7, 8, 12])
df['is_warm_season'] = int(forecast_date.month in [4, 5, 6, 7, 8, 9])
# Weather-based derived features (if weather data available)
if 'temperature' in df.columns:
temp = df['temperature'].iloc[0]
df['temp_squared'] = temp ** 2 # ✅ FIX: Added temp_squared
df['is_pleasant_day'] = int(18 <= temp <= 25)
df['temp_category'] = int(self._get_temp_category(temp))
df['is_hot_day'] = int(temp > 25)
df['is_cold_day'] = int(temp < 10)
if 'precipitation' in df.columns:
precip = df['precipitation'].iloc[0]
df['is_rainy_day'] = int(precip > 0.1)
df['is_heavy_rain'] = int(precip > 10.0)
df['rain_intensity'] = int(self._get_rain_intensity(precip))
# Traffic-based features (if available)
if 'traffic_volume' in df.columns and df['traffic_volume'].iloc[0] > 0:
traffic = df['traffic_volume'].iloc[0]
# Simple categorization since we don't have historical data for quantiles
df['high_traffic'] = int(traffic > 150) # Assumption based on typical values
df['low_traffic'] = int(traffic < 50)
df['traffic_normalized'] = float((traffic - 100) / 50) # Simple normalization
# ✅ FIX: Add additional traffic features that might be in training
df['traffic_squared'] = traffic ** 2
df['traffic_log'] = float(np.log1p(traffic)) # log(1+traffic) to handle zeros
else:
df['high_traffic'] = 0
df['low_traffic'] = 0
df['traffic_normalized'] = 0.0
df['traffic_squared'] = 0.0
df['traffic_log'] = 0.0
# Interaction features (common in training)
if 'is_weekend' in df.columns and 'temperature' in df.columns:
df['weekend_temp_interaction'] = df['is_weekend'].iloc[0] * df['temperature'].iloc[0]
df['weekend_pleasant_weather'] = df['is_weekend'].iloc[0] * df.get('is_pleasant_day', pd.Series([0])).iloc[0]
if 'is_holiday' in df.columns and 'temperature' in df.columns:
df['holiday_temp_interaction'] = df['is_holiday'].iloc[0] * df['temperature'].iloc[0]
if 'season' in df.columns and 'temperature' in df.columns:
df['season_temp_interaction'] = df['season'].iloc[0] * df['temperature'].iloc[0]
# ✅ FIX: Add more interaction features that might be in training
if 'is_rainy_day' in df.columns and 'traffic_volume' in df.columns:
df['rain_traffic_interaction'] = df['is_rainy_day'].iloc[0] * df['traffic_volume'].iloc[0]
if 'is_weekend' in df.columns and 'traffic_volume' in df.columns:
df['weekend_traffic_interaction'] = df['is_weekend'].iloc[0] * df['traffic_volume'].iloc[0]
# Day-weather interactions
if 'day_of_week' in df.columns and 'temperature' in df.columns:
df['day_temp_interaction'] = df['day_of_week'].iloc[0] * df['temperature'].iloc[0]
if 'month' in df.columns and 'temperature' in df.columns:
df['month_temp_interaction'] = df['month'].iloc[0] * df['temperature'].iloc[0]
# ✅ FIX: Add comprehensive derived features to match training
# Humidity-based features
if 'humidity' in df.columns:
humidity = df['humidity'].iloc[0]
df['humidity_squared'] = humidity ** 2
df['is_high_humidity'] = int(humidity > 70)
df['is_low_humidity'] = int(humidity < 40)
# Pressure-based features
if 'pressure' in df.columns:
pressure = df['pressure'].iloc[0]
df['pressure_squared'] = pressure ** 2
df['is_high_pressure'] = int(pressure > 1020)
df['is_low_pressure'] = int(pressure < 1000)
# Wind-based features
if 'wind_speed' in df.columns:
wind = df['wind_speed'].iloc[0]
df['wind_squared'] = wind ** 2
df['is_windy'] = int(wind > 15)
df['is_calm'] = int(wind < 5)
# Precipitation-based features (additional to basic ones)
if 'precipitation' in df.columns:
precip = df['precipitation'].iloc[0]
df['precip_squared'] = precip ** 2
df['precip_log'] = float(np.log1p(precip))
logger.debug("Prophet features prepared with comprehensive derived features",
feature_count=len(df.columns),
date=features['date'],
season=df['season'].iloc[0],
day_of_week=day_of_week,
is_monday=df['is_monday'].iloc[0])
temp_squared=df.get('temp_squared', pd.Series([0])).iloc[0])
return df
except Exception as e:
logger.error("Error preparing Prophet features", error=str(e))
raise
logger.error(f"Error preparing Prophet features: {e}")
raise
def _get_season(self, month: int) -> int:
"""Get season from month (1-4 for Winter, Spring, Summer, Autumn) - MATCH TRAINING"""
if month in [12, 1, 2]:
return 1 # Winter
elif month in [3, 4, 5]:
return 2 # Spring
elif month in [6, 7, 8]:
return 3 # Summer
else:
return 4 # Autumn
def _is_school_holiday(self, date: datetime) -> bool:
"""Check if a date is during school holidays - MATCH TRAINING"""
month = date.month
# Approximate Spanish school holiday periods
if month in [7, 8]: # Summer holidays
return True
if month == 12 and date.day >= 20: # Christmas holidays
return True
if month == 1 and date.day <= 10: # Christmas holidays continued
return True
if month == 4 and date.day <= 15: # Easter holidays (approximate)
return True
return False
def _get_temp_category(self, temperature: float) -> int:
"""Get temperature category (0-3) - MATCH TRAINING"""
if temperature <= 5:
return 0 # Very cold
elif temperature <= 15:
return 1 # Cold
elif temperature <= 25:
return 2 # Mild
else:
return 3 # Hot
def _get_rain_intensity(self, precipitation: float) -> int:
"""Get rain intensity category (0-3) - MATCH TRAINING"""
if precipitation <= 0:
return 0 # No rain
elif precipitation <= 2:
return 1 # Light rain
elif precipitation <= 10:
return 2 # Moderate rain
else:
return 3 # Heavy rain