Files
bakery-ia/services/forecasting/app/services/prediction_service.py
2025-07-30 00:23:05 +02:00

448 lines
20 KiB
Python

# services/forecasting/app/services/prediction_service.py - FIXED SEASON FEATURE
"""
Prediction service for loading models and generating predictions
FIXED: Added missing 'season' feature that matches training service exactly
"""
import structlog
from typing import Dict, List, Any, Optional
import asyncio
import pickle
import json
from datetime import datetime, date
import numpy as np
import pandas as pd
import httpx
from pathlib import Path
import os
import joblib
from app.core.config import settings
from shared.monitoring.metrics import MetricsCollector
logger = structlog.get_logger()
metrics = MetricsCollector("forecasting-service")
class PredictionService:
"""
Service for loading ML models and generating predictions
Interfaces with trained Prophet models from the training service
"""
def __init__(self):
self.model_cache = {}
self.cache_ttl = 3600 # 1 hour cache
async def predict(self, model_id: str, model_path: str, features: Dict[str, Any],
confidence_level: float = 0.8) -> Dict[str, float]:
"""Generate prediction using trained model"""
start_time = datetime.now()
try:
logger.info("Generating prediction",
model_id=model_id,
features_count=len(features))
# Load model
model = await self._load_model(model_id, model_path)
if not model:
raise ValueError(f"Model {model_id} not found or failed to load")
# Prepare features for Prophet model
prophet_df = self._prepare_prophet_features(features)
# Generate prediction
forecast = model.predict(prophet_df)
# Extract prediction values
prediction_value = float(forecast['yhat'].iloc[0])
lower_bound = float(forecast['yhat_lower'].iloc[0])
upper_bound = float(forecast['yhat_upper'].iloc[0])
# Calculate confidence interval
confidence_interval = upper_bound - lower_bound
result = {
"prediction": max(0, prediction_value), # Ensure non-negative
"lower_bound": max(0, lower_bound),
"upper_bound": max(0, upper_bound),
"confidence_interval": confidence_interval,
"confidence_level": confidence_level
}
# Record metrics
processing_time = (datetime.now() - start_time).total_seconds()
metrics.register_histogram("prediction_processing_time_seconds", processing_time)
metrics.increment_counter("predictions_served_total")
logger.info("Prediction generated successfully",
model_id=model_id,
prediction=result["prediction"],
processing_time=processing_time)
return result
except Exception as e:
logger.error("Error generating prediction",
error=str(e),
model_id=model_id)
metrics.increment_counter("prediction_errors_total")
raise
async def _load_model(self, model_id: str, model_path: str):
"""Load model from file with improved validation and error handling"""
# Enhanced model file validation
if not await self._validate_model_file(model_path):
logger.error(f"Model file not valid: {model_path}")
return None
# Check cache first
if model_id in self.model_cache:
cached_model, cached_time = self.model_cache[model_id]
if (datetime.now() - cached_time).seconds < self.cache_ttl:
return cached_model
try:
if os.path.exists(model_path):
# Try multiple loading methods for compatibility
model = await self._load_model_safely(model_path)
if model is None:
logger.error(f"Failed to load model from: {model_path}")
return None
# Cache the model
self.model_cache[model_id] = (model, datetime.now())
logger.info(f"Model loaded successfully: {model_path}")
return model
else:
logger.error(f"Model file not found: {model_path}")
return None
except Exception as e:
logger.error(f"Error loading model: {e}")
return None
async def _load_model_safely(self, model_path: str):
"""Safely load model with multiple fallback methods"""
# Method 1: Try joblib first (recommended for sklearn/Prophet models)
try:
logger.debug(f"Attempting to load model with joblib: {model_path}")
model = joblib.load(model_path)
logger.info(f"Model loaded successfully with joblib")
return model
except Exception as e:
logger.warning(f"Joblib loading failed: {e}")
# Method 2: Try pickle as fallback
try:
logger.debug(f"Attempting to load model with pickle: {model_path}")
with open(model_path, 'rb') as f:
model = pickle.load(f)
logger.info(f"Model loaded successfully with pickle")
return model
except Exception as e:
logger.warning(f"Pickle loading failed: {e}")
# Method 3: Try pandas pickle (for Prophet models saved with pandas)
try:
logger.debug(f"Attempting to load model with pandas: {model_path}")
import pandas as pd
model = pd.read_pickle(model_path)
logger.info(f"Model loaded successfully with pandas")
return model
except Exception as e:
logger.warning(f"Pandas loading failed: {e}")
logger.error(f"All loading methods failed for: {model_path}")
return None
async def _validate_model_file(self, model_path: str) -> bool:
"""Enhanced model file validation"""
try:
if not os.path.exists(model_path):
logger.error(f"Model file not found: {model_path}")
return False
# Check file size (should be > 1KB for a trained model)
file_size = os.path.getsize(model_path)
if file_size < 1024:
logger.warning(f"Model file too small ({file_size} bytes): {model_path}")
return False
# More comprehensive file format detection
try:
with open(model_path, 'rb') as f:
header = f.read(16) # Read more bytes for better detection
# Check for various pickle/joblib signatures
valid_signatures = [
b']\x93PICKLE', # Joblib
b'\x80\x03', # Pickle protocol 3
b'\x80\x04', # Pickle protocol 4
b'\x80\x05', # Pickle protocol 5
b'}\x94', # Newer joblib format
b'}\x93', # Alternative joblib format
]
is_valid_format = any(header.startswith(sig) for sig in valid_signatures)
if not is_valid_format:
# Log header for debugging but don't fail validation
logger.warning(f"Unrecognized file header: {header[:8]} for {model_path}")
logger.info("Proceeding with loading attempt despite unrecognized header")
# Return True to allow loading attempt - some valid files may have different headers
return True
return True
except Exception as e:
logger.error(f"Error reading model file header: {e}")
return False
except Exception as e:
logger.error(f"Model validation error: {e}")
return False
def _prepare_prophet_features(self, features: Dict[str, Any]) -> pd.DataFrame:
"""Convert features to Prophet-compatible DataFrame - FIXED TO MATCH TRAINING"""
try:
# Create base DataFrame with required 'ds' column
df = pd.DataFrame({
'ds': [pd.to_datetime(features['date'])]
})
# Add numeric features with safe conversion
numeric_features = [
'temperature', 'precipitation', 'humidity', 'wind_speed',
'traffic_volume', 'pedestrian_count', 'pressure' # ✅ FIX: Added pressure
]
for feature in numeric_features:
if feature in features and features[feature] is not None:
try:
df[feature] = float(features[feature])
except (ValueError, TypeError):
logger.warning(f"Could not convert {feature} to float: {features[feature]}")
df[feature] = 0.0
else:
df[feature] = 0.0
# Extract date information for temporal features
forecast_date = pd.to_datetime(features['date'])
day_of_week = forecast_date.weekday() # 0=Monday, 6=Sunday
# Add temporal features (MUST match training service exactly!)
df['day_of_week'] = int(day_of_week)
df['day_of_month'] = int(forecast_date.day)
df['month'] = int(forecast_date.month)
df['quarter'] = int(forecast_date.quarter)
df['week_of_year'] = int(forecast_date.isocalendar().week)
# ✅ FIX: Add the missing 'season' feature that matches training exactly
df['season'] = self._get_season(forecast_date.month)
# Bakery-specific temporal features
df['is_weekend'] = int(day_of_week >= 5)
df['is_monday'] = int(day_of_week == 0)
df['is_tuesday'] = int(day_of_week == 1)
df['is_wednesday'] = int(day_of_week == 2)
df['is_thursday'] = int(day_of_week == 3)
df['is_friday'] = int(day_of_week == 4)
df['is_saturday'] = int(day_of_week == 5)
df['is_sunday'] = int(day_of_week == 6)
# Season-based features (match training service)
df['is_spring'] = int(df['season'].iloc[0] == 2)
df['is_summer'] = int(df['season'].iloc[0] == 3)
df['is_autumn'] = int(df['season'].iloc[0] == 4)
df['is_winter'] = int(df['season'].iloc[0] == 1)
# Holiday features
df['is_holiday'] = int(features.get('is_holiday', False))
# Month-based features
df['is_january'] = int(forecast_date.month == 1)
df['is_february'] = int(forecast_date.month == 2)
df['is_march'] = int(forecast_date.month == 3)
df['is_april'] = int(forecast_date.month == 4)
df['is_may'] = int(forecast_date.month == 5)
df['is_june'] = int(forecast_date.month == 6)
df['is_july'] = int(forecast_date.month == 7)
df['is_august'] = int(forecast_date.month == 8)
df['is_september'] = int(forecast_date.month == 9)
df['is_october'] = int(forecast_date.month == 10)
df['is_november'] = int(forecast_date.month == 11)
df['is_december'] = int(forecast_date.month == 12)
# Additional features that might be in training data
df['is_month_start'] = int(forecast_date.day <= 3)
df['is_month_end'] = int(forecast_date.day >= 28)
df['is_quarter_start'] = int(forecast_date.month in [1, 4, 7, 10] and forecast_date.day <= 7)
df['is_quarter_end'] = int(forecast_date.month in [3, 6, 9, 12] and forecast_date.day >= 25)
# Business context features
df['is_school_holiday'] = int(self._is_school_holiday(forecast_date))
df['is_payday_period'] = int((forecast_date.day <= 5) or (forecast_date.day >= 25))
# Working day features
df['is_working_day'] = int(day_of_week < 5) # Monday-Friday
df['is_peak_bakery_day'] = int(day_of_week in [4, 5, 6]) # Friday, Saturday, Sunday
# Seasonal demand patterns
df['is_high_demand_month'] = int(forecast_date.month in [6, 7, 8, 12])
df['is_warm_season'] = int(forecast_date.month in [4, 5, 6, 7, 8, 9])
# Weather-based derived features (if weather data available)
if 'temperature' in df.columns:
temp = df['temperature'].iloc[0]
df['temp_squared'] = temp ** 2 # ✅ FIX: Added temp_squared
df['is_pleasant_day'] = int(18 <= temp <= 25)
df['temp_category'] = int(self._get_temp_category(temp))
df['is_hot_day'] = int(temp > 25)
df['is_cold_day'] = int(temp < 10)
if 'precipitation' in df.columns:
precip = df['precipitation'].iloc[0]
df['is_rainy_day'] = int(precip > 0.1)
df['is_heavy_rain'] = int(precip > 10.0)
df['rain_intensity'] = int(self._get_rain_intensity(precip))
# Traffic-based features (if available)
if 'traffic_volume' in df.columns and df['traffic_volume'].iloc[0] > 0:
traffic = df['traffic_volume'].iloc[0]
# Simple categorization since we don't have historical data for quantiles
df['high_traffic'] = int(traffic > 150) # Assumption based on typical values
df['low_traffic'] = int(traffic < 50)
df['traffic_normalized'] = float((traffic - 100) / 50) # Simple normalization
# ✅ FIX: Add additional traffic features that might be in training
df['traffic_squared'] = traffic ** 2
df['traffic_log'] = float(np.log1p(traffic)) # log(1+traffic) to handle zeros
else:
df['high_traffic'] = 0
df['low_traffic'] = 0
df['traffic_normalized'] = 0.0
df['traffic_squared'] = 0.0
df['traffic_log'] = 0.0
# Interaction features (common in training)
if 'is_weekend' in df.columns and 'temperature' in df.columns:
df['weekend_temp_interaction'] = df['is_weekend'].iloc[0] * df['temperature'].iloc[0]
df['weekend_pleasant_weather'] = df['is_weekend'].iloc[0] * df.get('is_pleasant_day', pd.Series([0])).iloc[0]
if 'is_holiday' in df.columns and 'temperature' in df.columns:
df['holiday_temp_interaction'] = df['is_holiday'].iloc[0] * df['temperature'].iloc[0]
if 'season' in df.columns and 'temperature' in df.columns:
df['season_temp_interaction'] = df['season'].iloc[0] * df['temperature'].iloc[0]
# ✅ FIX: Add more interaction features that might be in training
if 'is_rainy_day' in df.columns and 'traffic_volume' in df.columns:
df['rain_traffic_interaction'] = df['is_rainy_day'].iloc[0] * df['traffic_volume'].iloc[0]
if 'is_weekend' in df.columns and 'traffic_volume' in df.columns:
df['weekend_traffic_interaction'] = df['is_weekend'].iloc[0] * df['traffic_volume'].iloc[0]
# Day-weather interactions
if 'day_of_week' in df.columns and 'temperature' in df.columns:
df['day_temp_interaction'] = df['day_of_week'].iloc[0] * df['temperature'].iloc[0]
if 'month' in df.columns and 'temperature' in df.columns:
df['month_temp_interaction'] = df['month'].iloc[0] * df['temperature'].iloc[0]
# ✅ FIX: Add comprehensive derived features to match training
# Humidity-based features
if 'humidity' in df.columns:
humidity = df['humidity'].iloc[0]
df['humidity_squared'] = humidity ** 2
df['is_high_humidity'] = int(humidity > 70)
df['is_low_humidity'] = int(humidity < 40)
# Pressure-based features
if 'pressure' in df.columns:
pressure = df['pressure'].iloc[0]
df['pressure_squared'] = pressure ** 2
df['is_high_pressure'] = int(pressure > 1020)
df['is_low_pressure'] = int(pressure < 1000)
# Wind-based features
if 'wind_speed' in df.columns:
wind = df['wind_speed'].iloc[0]
df['wind_squared'] = wind ** 2
df['is_windy'] = int(wind > 15)
df['is_calm'] = int(wind < 5)
# Precipitation-based features (additional to basic ones)
if 'precipitation' in df.columns:
precip = df['precipitation'].iloc[0]
df['precip_squared'] = precip ** 2
df['precip_log'] = float(np.log1p(precip))
logger.debug("Prophet features prepared with comprehensive derived features",
feature_count=len(df.columns),
date=features['date'],
season=df['season'].iloc[0],
day_of_week=day_of_week,
temp_squared=df.get('temp_squared', pd.Series([0])).iloc[0])
return df
except Exception as e:
logger.error(f"Error preparing Prophet features: {e}")
raise
def _get_season(self, month: int) -> int:
"""Get season from month (1-4 for Winter, Spring, Summer, Autumn) - MATCH TRAINING"""
if month in [12, 1, 2]:
return 1 # Winter
elif month in [3, 4, 5]:
return 2 # Spring
elif month in [6, 7, 8]:
return 3 # Summer
else:
return 4 # Autumn
def _is_school_holiday(self, date: datetime) -> bool:
"""Check if a date is during school holidays - MATCH TRAINING"""
month = date.month
# Approximate Spanish school holiday periods
if month in [7, 8]: # Summer holidays
return True
if month == 12 and date.day >= 20: # Christmas holidays
return True
if month == 1 and date.day <= 10: # Christmas holidays continued
return True
if month == 4 and date.day <= 15: # Easter holidays (approximate)
return True
return False
def _get_temp_category(self, temperature: float) -> int:
"""Get temperature category (0-3) - MATCH TRAINING"""
if temperature <= 5:
return 0 # Very cold
elif temperature <= 15:
return 1 # Cold
elif temperature <= 25:
return 2 # Mild
else:
return 3 # Hot
def _get_rain_intensity(self, precipitation: float) -> int:
"""Get rain intensity category (0-3) - MATCH TRAINING"""
if precipitation <= 0:
return 0 # No rain
elif precipitation <= 2:
return 1 # Light rain
elif precipitation <= 10:
return 2 # Moderate rain
else:
return 3 # Heavy rain