440 lines
19 KiB
Python
440 lines
19 KiB
Python
# services/training/app/ml/trainer.py
|
|
"""
|
|
ML Trainer - Main ML pipeline coordinator
|
|
Receives prepared data and orchestrates the complete ML training process
|
|
"""
|
|
|
|
from typing import Dict, List, Any, Optional
|
|
import pandas as pd
|
|
import numpy as np
|
|
from datetime import datetime
|
|
import logging
|
|
import uuid
|
|
|
|
from app.ml.data_processor import BakeryDataProcessor
|
|
from app.ml.prophet_manager import BakeryProphetManager
|
|
from app.services.training_orchestrator import TrainingDataSet
|
|
from app.core.config import settings
|
|
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class BakeryMLTrainer:
|
|
"""
|
|
Main ML trainer that orchestrates the complete ML training pipeline.
|
|
Receives prepared TrainingDataSet and coordinates data processing and model training.
|
|
"""
|
|
|
|
def __init__(self, db_session: AsyncSession = None):
|
|
self.data_processor = BakeryDataProcessor()
|
|
self.prophet_manager = BakeryProphetManager(db_session=db_session)
|
|
|
|
async def train_tenant_models(self,
|
|
tenant_id: str,
|
|
training_dataset: TrainingDataSet,
|
|
job_id: Optional[str] = None) -> Dict[str, Any]:
|
|
"""
|
|
Train models for all products using prepared training dataset.
|
|
|
|
Args:
|
|
tenant_id: Tenant identifier
|
|
training_dataset: Prepared training dataset with aligned dates
|
|
job_id: Training job identifier
|
|
|
|
Returns:
|
|
Dictionary with training results for each product
|
|
"""
|
|
if not job_id:
|
|
job_id = f"ml_training_{tenant_id}_{uuid.uuid4().hex[:8]}"
|
|
|
|
logger.info(f"Starting ML training pipeline {job_id} for tenant {tenant_id}")
|
|
|
|
try:
|
|
# Convert sales data to DataFrame
|
|
sales_df = pd.DataFrame(training_dataset.sales_data)
|
|
weather_df = pd.DataFrame(training_dataset.weather_data)
|
|
traffic_df = pd.DataFrame(training_dataset.traffic_data)
|
|
|
|
# Validate input data
|
|
await self._validate_input_data(sales_df, tenant_id)
|
|
|
|
# Get unique products from the sales data
|
|
products = sales_df['product_name'].unique().tolist()
|
|
logger.info(f"Training models for {len(products)} products: {products}")
|
|
|
|
# Process data for each product
|
|
logger.info("Processing data for all products...")
|
|
processed_data = await self._process_all_products(
|
|
sales_df, weather_df, traffic_df, products
|
|
)
|
|
|
|
# Train models for each processed product
|
|
logger.info("Training models for all products...")
|
|
training_results = await self._train_all_models(
|
|
tenant_id, processed_data, job_id
|
|
)
|
|
|
|
# Calculate overall training summary
|
|
summary = self._calculate_training_summary(training_results)
|
|
|
|
result = {
|
|
"job_id": job_id,
|
|
"tenant_id": tenant_id,
|
|
"status": "completed",
|
|
"products_trained": len([r for r in training_results.values() if r.get('status') == 'success']),
|
|
"products_failed": len([r for r in training_results.values() if r.get('status') == 'error']),
|
|
"products_skipped": len([r for r in training_results.values() if r.get('status') == 'skipped']),
|
|
"total_products": len(products),
|
|
"training_results": training_results,
|
|
"summary": summary,
|
|
"data_info": {
|
|
"date_range": {
|
|
"start": training_dataset.date_range.start.isoformat(),
|
|
"end": training_dataset.date_range.end.isoformat(),
|
|
"duration_days": (training_dataset.date_range.end - training_dataset.date_range.start).days
|
|
},
|
|
"data_sources": [source.value for source in training_dataset.date_range.available_sources],
|
|
"constraints_applied": training_dataset.date_range.constraints
|
|
},
|
|
"completed_at": datetime.now().isoformat()
|
|
}
|
|
|
|
logger.info(f"ML training pipeline {job_id} completed successfully")
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"ML training pipeline {job_id} failed: {str(e)}")
|
|
raise
|
|
|
|
async def train_single_product_model(self,
|
|
tenant_id: str,
|
|
product_name: str,
|
|
training_dataset: TrainingDataSet,
|
|
job_id: Optional[str] = None) -> Dict[str, Any]:
|
|
"""
|
|
Train model for a single product using prepared training dataset.
|
|
|
|
Args:
|
|
tenant_id: Tenant identifier
|
|
product_name: Product name
|
|
training_dataset: Prepared training dataset
|
|
job_id: Training job identifier
|
|
|
|
Returns:
|
|
Training result for the product
|
|
"""
|
|
if not job_id:
|
|
job_id = f"single_ml_{tenant_id}_{product_name}_{uuid.uuid4().hex[:8]}"
|
|
|
|
logger.info(f"Starting single product ML training {job_id} for {product_name}")
|
|
|
|
try:
|
|
# Convert training data to DataFrames
|
|
sales_df = pd.DataFrame(training_dataset.sales_data)
|
|
weather_df = pd.DataFrame(training_dataset.weather_data)
|
|
traffic_df = pd.DataFrame(training_dataset.traffic_data)
|
|
|
|
# Filter sales data for the specific product
|
|
product_sales = sales_df[sales_df['product_name'] == product_name].copy()
|
|
|
|
# Validate product data
|
|
if product_sales.empty:
|
|
raise ValueError(f"No sales data found for product: {product_name}")
|
|
|
|
# Process data for this specific product
|
|
processed_data = await self.data_processor.prepare_training_data(
|
|
sales_data=product_sales,
|
|
weather_data=weather_df,
|
|
traffic_data=traffic_df,
|
|
product_name=product_name
|
|
)
|
|
|
|
# Train the model
|
|
model_info = await self.prophet_manager.train_bakery_model(
|
|
tenant_id=tenant_id,
|
|
product_name=product_name,
|
|
df=processed_data,
|
|
job_id=job_id
|
|
)
|
|
|
|
result = {
|
|
"job_id": job_id,
|
|
"tenant_id": tenant_id,
|
|
"product_name": product_name,
|
|
"status": "success",
|
|
"model_info": model_info,
|
|
"data_points": len(processed_data),
|
|
"data_info": {
|
|
"date_range": {
|
|
"start": training_dataset.date_range.start.isoformat(),
|
|
"end": training_dataset.date_range.end.isoformat(),
|
|
"duration_days": (training_dataset.date_range.end - training_dataset.date_range.start).days
|
|
},
|
|
"data_sources": [source.value for source in training_dataset.date_range.available_sources],
|
|
"constraints_applied": training_dataset.date_range.constraints
|
|
},
|
|
"completed_at": datetime.now().isoformat()
|
|
}
|
|
|
|
logger.info(f"Single product ML training {job_id} completed successfully")
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Single product ML training {job_id} failed: {str(e)}")
|
|
raise
|
|
|
|
async def evaluate_model_performance(self,
|
|
tenant_id: str,
|
|
product_name: str,
|
|
model_path: str,
|
|
test_dataset: TrainingDataSet) -> Dict[str, Any]:
|
|
"""
|
|
Evaluate model performance using test dataset.
|
|
|
|
Args:
|
|
tenant_id: Tenant identifier
|
|
product_name: Product name
|
|
model_path: Path to the trained model
|
|
test_dataset: Test dataset for evaluation
|
|
|
|
Returns:
|
|
Performance metrics
|
|
"""
|
|
try:
|
|
logger.info(f"Evaluating model performance for {product_name}")
|
|
|
|
# Convert test data to DataFrames
|
|
test_sales_df = pd.DataFrame(test_dataset.sales_data)
|
|
test_weather_df = pd.DataFrame(test_dataset.weather_data)
|
|
test_traffic_df = pd.DataFrame(test_dataset.traffic_data)
|
|
|
|
# Filter for specific product
|
|
product_test_sales = test_sales_df[test_sales_df['product_name'] == product_name].copy()
|
|
|
|
if product_test_sales.empty:
|
|
raise ValueError(f"No test data found for product: {product_name}")
|
|
|
|
# Process test data
|
|
processed_test_data = await self.data_processor.prepare_training_data(
|
|
sales_data=product_test_sales,
|
|
weather_data=test_weather_df,
|
|
traffic_data=test_traffic_df,
|
|
product_name=product_name
|
|
)
|
|
|
|
# Create future dataframe for prediction
|
|
future_dates = processed_test_data[['ds']].copy()
|
|
|
|
# Add regressor columns
|
|
regressor_columns = [col for col in processed_test_data.columns if col not in ['ds', 'y']]
|
|
for col in regressor_columns:
|
|
future_dates[col] = processed_test_data[col]
|
|
|
|
# Generate predictions
|
|
forecast = await self.prophet_manager.generate_forecast(
|
|
model_path=model_path,
|
|
future_dates=future_dates,
|
|
regressor_columns=regressor_columns
|
|
)
|
|
|
|
# Calculate performance metrics
|
|
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
|
|
|
|
y_true = processed_test_data['y'].values
|
|
y_pred = forecast['yhat'].values
|
|
|
|
# Ensure arrays are the same length
|
|
min_len = min(len(y_true), len(y_pred))
|
|
y_true = y_true[:min_len]
|
|
y_pred = y_pred[:min_len]
|
|
|
|
metrics = {
|
|
"mae": float(mean_absolute_error(y_true, y_pred)),
|
|
"rmse": float(np.sqrt(mean_squared_error(y_true, y_pred))),
|
|
"r2_score": float(r2_score(y_true, y_pred))
|
|
}
|
|
|
|
# Calculate MAPE safely
|
|
non_zero_mask = y_true > 0.1
|
|
if np.sum(non_zero_mask) > 0:
|
|
mape = np.mean(np.abs((y_true[non_zero_mask] - y_pred[non_zero_mask]) / y_true[non_zero_mask])) * 100
|
|
metrics["mape"] = float(min(mape, 200)) # Cap at 200%
|
|
else:
|
|
metrics["mape"] = 100.0
|
|
|
|
result = {
|
|
"tenant_id": tenant_id,
|
|
"product_name": product_name,
|
|
"evaluation_metrics": metrics,
|
|
"test_samples": len(processed_test_data),
|
|
"prediction_samples": len(forecast),
|
|
"test_period": {
|
|
"start": test_dataset.date_range.start.isoformat(),
|
|
"end": test_dataset.date_range.end.isoformat()
|
|
},
|
|
"evaluated_at": datetime.now().isoformat()
|
|
}
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Model evaluation failed: {str(e)}")
|
|
raise
|
|
|
|
async def _validate_input_data(self, sales_df: pd.DataFrame, tenant_id: str):
|
|
"""Validate input sales data"""
|
|
if sales_df.empty:
|
|
raise ValueError(f"No sales data provided for tenant {tenant_id}")
|
|
|
|
# Handle quantity column mapping
|
|
if 'quantity_sold' in sales_df.columns and 'quantity' not in sales_df.columns:
|
|
sales_df['quantity'] = sales_df['quantity_sold']
|
|
logger.info("Mapped 'quantity_sold' to 'quantity' column")
|
|
|
|
required_columns = ['date', 'product_name', 'quantity']
|
|
missing_columns = [col for col in required_columns if col not in sales_df.columns]
|
|
if missing_columns:
|
|
raise ValueError(f"Missing required columns: {missing_columns}")
|
|
|
|
# Check for valid dates
|
|
try:
|
|
sales_df['date'] = pd.to_datetime(sales_df['date'])
|
|
except Exception:
|
|
raise ValueError("Invalid date format in sales data")
|
|
|
|
# Check for valid quantities
|
|
if not sales_df['quantity'].dtype in ['int64', 'float64']:
|
|
try:
|
|
sales_df['quantity'] = pd.to_numeric(sales_df['quantity'], errors='coerce')
|
|
except Exception:
|
|
raise ValueError("Quantity column must be numeric")
|
|
|
|
async def _process_all_products(self,
|
|
sales_df: pd.DataFrame,
|
|
weather_df: pd.DataFrame,
|
|
traffic_df: pd.DataFrame,
|
|
products: List[str]) -> Dict[str, pd.DataFrame]:
|
|
"""Process data for all products using the data processor"""
|
|
processed_data = {}
|
|
|
|
for product_name in products:
|
|
try:
|
|
logger.info(f"Processing data for product: {product_name}")
|
|
|
|
# Filter sales data for this product
|
|
product_sales = sales_df[sales_df['product_name'] == product_name].copy()
|
|
|
|
if product_sales.empty:
|
|
logger.warning(f"No sales data found for product: {product_name}")
|
|
continue
|
|
|
|
# Use data processor to prepare training data
|
|
processed_product_data = await self.data_processor.prepare_training_data(
|
|
sales_data=product_sales,
|
|
weather_data=weather_df,
|
|
traffic_data=traffic_df,
|
|
product_name=product_name
|
|
)
|
|
|
|
processed_data[product_name] = processed_product_data
|
|
logger.info(f"Processed {len(processed_product_data)} data points for {product_name}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to process data for {product_name}: {str(e)}")
|
|
# Continue with other products
|
|
continue
|
|
|
|
return processed_data
|
|
|
|
async def _train_all_models(self,
|
|
tenant_id: str,
|
|
processed_data: Dict[str, pd.DataFrame],
|
|
job_id: str) -> Dict[str, Any]:
|
|
"""Train models for all processed products using Prophet manager"""
|
|
training_results = {}
|
|
|
|
for product_name, product_data in processed_data.items():
|
|
try:
|
|
logger.info(f"Training model for product: {product_name}")
|
|
|
|
# Check if we have enough data
|
|
if len(product_data) < settings.MIN_TRAINING_DATA_DAYS:
|
|
training_results[product_name] = {
|
|
'status': 'skipped',
|
|
'reason': 'insufficient_data',
|
|
'data_points': len(product_data),
|
|
'min_required': settings.MIN_TRAINING_DATA_DAYS,
|
|
'message': f'Need at least {settings.MIN_TRAINING_DATA_DAYS} data points, got {len(product_data)}'
|
|
}
|
|
logger.warning(f"Skipping {product_name}: insufficient data ({len(product_data)} < {settings.MIN_TRAINING_DATA_DAYS})")
|
|
continue
|
|
|
|
# Train the model using Prophet manager
|
|
model_info = await self.prophet_manager.train_bakery_model(
|
|
tenant_id=tenant_id,
|
|
product_name=product_name,
|
|
df=product_data,
|
|
job_id=job_id
|
|
)
|
|
|
|
training_results[product_name] = {
|
|
'status': 'success',
|
|
'model_info': model_info,
|
|
'data_points': len(product_data),
|
|
'trained_at': datetime.now().isoformat()
|
|
}
|
|
|
|
logger.info(f"Successfully trained model for {product_name}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to train model for {product_name}: {str(e)}")
|
|
training_results[product_name] = {
|
|
'status': 'error',
|
|
'error_message': str(e),
|
|
'data_points': len(product_data) if product_data is not None else 0,
|
|
'failed_at': datetime.now().isoformat()
|
|
}
|
|
|
|
return training_results
|
|
|
|
def _calculate_training_summary(self, training_results: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Calculate summary statistics from training results"""
|
|
total_products = len(training_results)
|
|
successful_products = len([r for r in training_results.values() if r.get('status') == 'success'])
|
|
failed_products = len([r for r in training_results.values() if r.get('status') == 'error'])
|
|
skipped_products = len([r for r in training_results.values() if r.get('status') == 'skipped'])
|
|
|
|
# Calculate average training metrics for successful models
|
|
successful_results = [r for r in training_results.values() if r.get('status') == 'success']
|
|
|
|
avg_metrics = {}
|
|
if successful_results:
|
|
metrics_list = [r['model_info'].get('training_metrics', {}) for r in successful_results]
|
|
|
|
if metrics_list and all(metrics_list):
|
|
avg_metrics = {
|
|
'avg_mae': round(np.mean([m.get('mae', 0) for m in metrics_list]), 2),
|
|
'avg_rmse': round(np.mean([m.get('rmse', 0) for m in metrics_list]), 2),
|
|
'avg_mape': round(np.mean([m.get('mape', 0) for m in metrics_list]), 2),
|
|
'avg_r2': round(np.mean([m.get('r2', 0) for m in metrics_list]), 3),
|
|
'avg_improvement': round(np.mean([m.get('improvement_estimated', 0) for m in metrics_list]), 1)
|
|
}
|
|
|
|
# Calculate data quality insights
|
|
data_points_list = [r.get('data_points', 0) for r in training_results.values()]
|
|
|
|
return {
|
|
'total_products': total_products,
|
|
'successful_products': successful_products,
|
|
'failed_products': failed_products,
|
|
'skipped_products': skipped_products,
|
|
'success_rate': round(successful_products / total_products * 100, 2) if total_products > 0 else 0,
|
|
'average_metrics': avg_metrics,
|
|
'data_summary': {
|
|
'total_data_points': sum(data_points_list),
|
|
'avg_data_points_per_product': round(np.mean(data_points_list), 1) if data_points_list else 0,
|
|
'min_data_points': min(data_points_list) if data_points_list else 0,
|
|
'max_data_points': max(data_points_list) if data_points_list else 0
|
|
}
|
|
} |