Files
bakery-ia/services/orders/app/services/smart_procurement_calculator.py
2025-10-27 16:33:26 +01:00

340 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# services/orders/app/services/smart_procurement_calculator.py
"""
Smart Procurement Calculator
Implements multi-constraint procurement quantity optimization combining:
- AI demand forecasting
- Ingredient reorder rules (reorder_point, reorder_quantity)
- Supplier constraints (minimum_order_quantity, minimum_order_amount)
- Storage limits (max_stock_level)
- Price tier optimization
"""
import math
from decimal import Decimal
from typing import Dict, Any, List, Tuple, Optional
import structlog
logger = structlog.get_logger()
class SmartProcurementCalculator:
"""
Smart procurement quantity calculator with multi-tier constraint optimization
"""
def __init__(self, procurement_settings: Dict[str, Any]):
"""
Initialize calculator with tenant procurement settings
Args:
procurement_settings: Tenant settings dict with flags:
- use_reorder_rules: bool
- economic_rounding: bool
- respect_storage_limits: bool
- use_supplier_minimums: bool
- optimize_price_tiers: bool
"""
self.use_reorder_rules = procurement_settings.get('use_reorder_rules', True)
self.economic_rounding = procurement_settings.get('economic_rounding', True)
self.respect_storage_limits = procurement_settings.get('respect_storage_limits', True)
self.use_supplier_minimums = procurement_settings.get('use_supplier_minimums', True)
self.optimize_price_tiers = procurement_settings.get('optimize_price_tiers', True)
def calculate_procurement_quantity(
self,
ingredient: Dict[str, Any],
supplier: Optional[Dict[str, Any]],
price_list_entry: Optional[Dict[str, Any]],
ai_forecast_quantity: Decimal,
current_stock: Decimal,
safety_stock_percentage: Decimal = Decimal('20.0')
) -> Dict[str, Any]:
"""
Calculate optimal procurement quantity using smart hybrid approach
Args:
ingredient: Ingredient data with reorder_point, reorder_quantity, max_stock_level
supplier: Supplier data with minimum_order_amount
price_list_entry: Price list with minimum_order_quantity, tier_pricing
ai_forecast_quantity: AI-predicted demand quantity
current_stock: Current stock level
safety_stock_percentage: Safety stock buffer percentage
Returns:
Dict with:
- order_quantity: Final calculated quantity to order
- calculation_method: Method used (e.g., 'REORDER_POINT_TRIGGERED')
- ai_suggested_quantity: Original AI forecast
- adjusted_quantity: Final quantity after constraints
- adjustment_reason: Human-readable explanation
- warnings: List of warnings/notes
- supplier_minimum_applied: bool
- storage_limit_applied: bool
- reorder_rule_applied: bool
- price_tier_applied: Dict or None
"""
warnings = []
result = {
'ai_suggested_quantity': ai_forecast_quantity,
'supplier_minimum_applied': False,
'storage_limit_applied': False,
'reorder_rule_applied': False,
'price_tier_applied': None
}
# Extract ingredient parameters
reorder_point = Decimal(str(ingredient.get('reorder_point', 0)))
reorder_quantity = Decimal(str(ingredient.get('reorder_quantity', 0)))
low_stock_threshold = Decimal(str(ingredient.get('low_stock_threshold', 0)))
max_stock_level = Decimal(str(ingredient.get('max_stock_level') or 'Infinity'))
# Extract supplier/price list parameters
supplier_min_qty = Decimal('0')
supplier_min_amount = Decimal('0')
tier_pricing = []
if price_list_entry:
supplier_min_qty = Decimal(str(price_list_entry.get('minimum_order_quantity', 0)))
tier_pricing = price_list_entry.get('tier_pricing') or []
if supplier:
supplier_min_amount = Decimal(str(supplier.get('minimum_order_amount', 0)))
# Calculate AI-based net requirement with safety stock
safety_stock = ai_forecast_quantity * (safety_stock_percentage / Decimal('100'))
total_needed = ai_forecast_quantity + safety_stock
ai_net_requirement = max(Decimal('0'), total_needed - current_stock)
# TIER 1: Critical Safety Check (Emergency Override)
if self.use_reorder_rules and current_stock <= low_stock_threshold:
base_order = max(reorder_quantity, ai_net_requirement)
result['calculation_method'] = 'CRITICAL_STOCK_EMERGENCY'
result['reorder_rule_applied'] = True
warnings.append(f"CRITICAL: Stock ({current_stock}) below threshold ({low_stock_threshold})")
order_qty = base_order
# TIER 2: Reorder Point Triggered
elif self.use_reorder_rules and current_stock <= reorder_point:
base_order = max(reorder_quantity, ai_net_requirement)
result['calculation_method'] = 'REORDER_POINT_TRIGGERED'
result['reorder_rule_applied'] = True
warnings.append(f"Reorder point triggered: stock ({current_stock}) ≤ reorder point ({reorder_point})")
order_qty = base_order
# TIER 3: Forecast-Driven (Above reorder point, no immediate need)
elif ai_net_requirement > 0:
order_qty = ai_net_requirement
result['calculation_method'] = 'FORECAST_DRIVEN_PROACTIVE'
warnings.append(f"AI forecast suggests ordering {ai_net_requirement} units")
# TIER 4: No Order Needed
else:
result['order_quantity'] = Decimal('0')
result['adjusted_quantity'] = Decimal('0')
result['calculation_method'] = 'SUFFICIENT_STOCK'
result['adjustment_reason'] = f"Current stock ({current_stock}) is sufficient. No order needed."
result['warnings'] = warnings
return result
# Apply Economic Rounding (reorder_quantity multiples)
if self.economic_rounding and reorder_quantity > 0:
multiples = math.ceil(float(order_qty / reorder_quantity))
rounded_qty = Decimal(multiples) * reorder_quantity
if rounded_qty > order_qty:
warnings.append(f"Rounded to {multiples}× reorder quantity ({reorder_quantity}) = {rounded_qty}")
order_qty = rounded_qty
# Apply Supplier Minimum Quantity Constraint
if self.use_supplier_minimums and supplier_min_qty > 0:
if order_qty < supplier_min_qty:
warnings.append(f"Increased from {order_qty} to supplier minimum ({supplier_min_qty})")
order_qty = supplier_min_qty
result['supplier_minimum_applied'] = True
else:
# Round to multiples of minimum_order_quantity (packaging constraint)
multiples = math.ceil(float(order_qty / supplier_min_qty))
rounded_qty = Decimal(multiples) * supplier_min_qty
if rounded_qty > order_qty:
warnings.append(f"Rounded to {multiples}× supplier packaging ({supplier_min_qty}) = {rounded_qty}")
result['supplier_minimum_applied'] = True
order_qty = rounded_qty
# Apply Price Tier Optimization
if self.optimize_price_tiers and tier_pricing and price_list_entry:
unit_price = Decimal(str(price_list_entry.get('unit_price', 0)))
tier_result = self._optimize_price_tier(
order_qty,
unit_price,
tier_pricing,
current_stock,
max_stock_level
)
if tier_result['tier_applied']:
order_qty = tier_result['optimized_quantity']
result['price_tier_applied'] = tier_result['tier_info']
warnings.append(tier_result['message'])
# Apply Storage Capacity Constraint
if self.respect_storage_limits and max_stock_level != Decimal('Infinity'):
if (current_stock + order_qty) > max_stock_level:
capped_qty = max(Decimal('0'), max_stock_level - current_stock)
warnings.append(f"Capped from {order_qty} to {capped_qty} due to storage limit ({max_stock_level})")
order_qty = capped_qty
result['storage_limit_applied'] = True
result['calculation_method'] += '_STORAGE_LIMITED'
# Check supplier minimum_order_amount (total order value constraint)
if self.use_supplier_minimums and supplier_min_amount > 0 and price_list_entry:
unit_price = Decimal(str(price_list_entry.get('unit_price', 0)))
order_value = order_qty * unit_price
if order_value < supplier_min_amount:
warnings.append(
f"⚠️ Order value €{order_value:.2f} < supplier minimum €{supplier_min_amount:.2f}. "
"This item needs to be combined with other products in the same PO."
)
result['calculation_method'] += '_NEEDS_CONSOLIDATION'
# Build final result
result['order_quantity'] = order_qty
result['adjusted_quantity'] = order_qty
result['adjustment_reason'] = self._build_adjustment_reason(
ai_forecast_quantity,
ai_net_requirement,
order_qty,
warnings,
result
)
result['warnings'] = warnings
return result
def _optimize_price_tier(
self,
current_qty: Decimal,
base_unit_price: Decimal,
tier_pricing: List[Dict[str, Any]],
current_stock: Decimal,
max_stock_level: Decimal
) -> Dict[str, Any]:
"""
Optimize order quantity to capture volume discount tiers if beneficial
Args:
current_qty: Current calculated order quantity
base_unit_price: Base unit price without tiers
tier_pricing: List of tier dicts with 'quantity' and 'price'
current_stock: Current stock level
max_stock_level: Maximum storage capacity
Returns:
Dict with tier_applied (bool), optimized_quantity, tier_info, message
"""
if not tier_pricing:
return {'tier_applied': False, 'optimized_quantity': current_qty}
# Sort tiers by quantity
sorted_tiers = sorted(tier_pricing, key=lambda x: x['quantity'])
best_tier = None
best_savings = Decimal('0')
for tier in sorted_tiers:
tier_qty = Decimal(str(tier['quantity']))
tier_price = Decimal(str(tier['price']))
# Skip if tier quantity is below current quantity (already captured)
if tier_qty <= current_qty:
continue
# Skip if tier would exceed storage capacity
if self.respect_storage_limits and (current_stock + tier_qty) > max_stock_level:
continue
# Skip if tier is more than 50% above current quantity (too much excess)
if tier_qty > current_qty * Decimal('1.5'):
continue
# Calculate savings
current_cost = current_qty * base_unit_price
tier_cost = tier_qty * tier_price
savings = current_cost - tier_cost
if savings > best_savings:
best_savings = savings
best_tier = {
'quantity': tier_qty,
'price': tier_price,
'savings': savings
}
if best_tier:
return {
'tier_applied': True,
'optimized_quantity': best_tier['quantity'],
'tier_info': best_tier,
'message': (
f"Upgraded to {best_tier['quantity']} units "
f"@ €{best_tier['price']}/unit "
f"(saves €{best_tier['savings']:.2f})"
)
}
return {'tier_applied': False, 'optimized_quantity': current_qty}
def _build_adjustment_reason(
self,
ai_forecast: Decimal,
ai_net_requirement: Decimal,
final_quantity: Decimal,
warnings: List[str],
result: Dict[str, Any]
) -> str:
"""
Build human-readable explanation of quantity adjustments
Args:
ai_forecast: Original AI forecast
ai_net_requirement: AI forecast + safety stock - current stock
final_quantity: Final order quantity after all adjustments
warnings: List of warning messages
result: Calculation result dict
Returns:
Human-readable adjustment explanation
"""
parts = []
# Start with calculation method
method = result.get('calculation_method', 'UNKNOWN')
parts.append(f"Method: {method.replace('_', ' ').title()}")
# AI forecast base
parts.append(f"AI Forecast: {ai_forecast} units, Net Requirement: {ai_net_requirement} units")
# Adjustments applied
adjustments = []
if result.get('reorder_rule_applied'):
adjustments.append("reorder rules")
if result.get('supplier_minimum_applied'):
adjustments.append("supplier minimums")
if result.get('storage_limit_applied'):
adjustments.append("storage limits")
if result.get('price_tier_applied'):
adjustments.append("price tier optimization")
if adjustments:
parts.append(f"Adjustments: {', '.join(adjustments)}")
# Final quantity
parts.append(f"Final Quantity: {final_quantity} units")
# Key warnings
if warnings:
key_warnings = [w for w in warnings if '⚠️' in w or 'CRITICAL' in w or 'saves €' in w]
if key_warnings:
parts.append(f"Notes: {'; '.join(key_warnings)}")
return " | ".join(parts)