Files
bakery-ia/services/data/app/external/aemet.py
2025-07-18 19:16:45 +02:00

346 lines
15 KiB
Python

# ================================================================
# services/data/app/external/aemet.py
# ================================================================
"""AEMET (Spanish Weather Service) API client - PROPER API FLOW FIX"""
import math
from typing import List, Dict, Any, Optional
from datetime import datetime, timedelta
import structlog
from app.external.base_client import BaseAPIClient
from app.core.config import settings
logger = structlog.get_logger()
class AEMETClient(BaseAPIClient):
def __init__(self):
super().__init__(
base_url="https://opendata.aemet.es/opendata/api",
api_key=settings.AEMET_API_KEY
)
async def get_current_weather(self, latitude: float, longitude: float) -> Optional[Dict[str, Any]]:
"""Get current weather for coordinates"""
try:
# Find nearest station
station_id = await self._get_nearest_station(latitude, longitude)
if not station_id:
logger.warning("No weather station found", lat=latitude, lon=longitude)
return await self._generate_synthetic_weather()
# AEMET API STEP 1: Get the datos URL
endpoint = f"/observacion/convencional/datos/estacion/{station_id}"
initial_response = await self._get(endpoint)
# CRITICAL FIX: Handle AEMET's two-step API response
if not initial_response or not isinstance(initial_response, dict):
logger.info("Invalid initial response from AEMET API", response_type=type(initial_response))
return await self._generate_synthetic_weather()
# Check if we got a successful response with datos URL
datos_url = initial_response.get("datos")
if not datos_url or not isinstance(datos_url, str):
logger.info("No datos URL in AEMET response", response=initial_response)
return await self._generate_synthetic_weather()
# AEMET API STEP 2: Fetch actual data from the datos URL
actual_weather_data = await self._fetch_from_url(datos_url)
if actual_weather_data and isinstance(actual_weather_data, list) and len(actual_weather_data) > 0:
# Parse the first station's data
weather_data = actual_weather_data[0]
if isinstance(weather_data, dict):
return self._parse_weather_data(weather_data)
# Fallback to synthetic data
logger.info("Falling back to synthetic weather data", reason="invalid_weather_data")
return await self._generate_synthetic_weather()
except Exception as e:
logger.error("Failed to get current weather", error=str(e))
return await self._generate_synthetic_weather()
async def get_forecast(self, latitude: float, longitude: float, days: int = 7) -> List[Dict[str, Any]]:
"""Get weather forecast for coordinates"""
try:
# Get municipality code for location
municipality_code = await self._get_municipality_code(latitude, longitude)
if not municipality_code:
logger.info("No municipality code found, using synthetic data")
return await self._generate_synthetic_forecast(days)
# AEMET API STEP 1: Get the datos URL
endpoint = f"/prediccion/especifica/municipio/diaria/{municipality_code}"
initial_response = await self._get(endpoint)
# CRITICAL FIX: Handle AEMET's two-step API response
if not initial_response or not isinstance(initial_response, dict):
logger.info("Invalid initial response from AEMET forecast API", response_type=type(initial_response))
return await self._generate_synthetic_forecast(days)
# Check if we got a successful response with datos URL
datos_url = initial_response.get("datos")
if not datos_url or not isinstance(datos_url, str):
logger.info("No datos URL in AEMET forecast response", response=initial_response)
return await self._generate_synthetic_forecast(days)
# AEMET API STEP 2: Fetch actual data from the datos URL
actual_forecast_data = await self._fetch_from_url(datos_url)
if actual_forecast_data and isinstance(actual_forecast_data, list):
return self._parse_forecast_data(actual_forecast_data, days)
# Fallback to synthetic data
logger.info("Falling back to synthetic forecast data", reason="invalid_forecast_data")
return await self._generate_synthetic_forecast(days)
except Exception as e:
logger.error("Failed to get weather forecast", error=str(e))
return await self._generate_synthetic_forecast(days)
async def _fetch_from_url(self, url: str) -> Optional[List[Dict[str, Any]]]:
"""Fetch data from AEMET datos URL"""
try:
# Use base client to fetch from the provided URL directly
data = await self._fetch_url_directly(url)
if data and isinstance(data, list):
return data
else:
logger.warning("Expected list from datos URL", data_type=type(data))
return None
except Exception as e:
logger.error("Failed to fetch from datos URL", url=url, error=str(e))
return None
async def get_historical_weather(self,
latitude: float,
longitude: float,
start_date: datetime,
end_date: datetime) -> List[Dict[str, Any]]:
"""Get historical weather data"""
try:
# For now, generate synthetic historical data
# In production, this would use AEMET historical data API with proper two-step flow
return await self._generate_synthetic_historical(start_date, end_date)
except Exception as e:
logger.error("Failed to get historical weather", error=str(e))
return []
async def _get_nearest_station(self, latitude: float, longitude: float) -> Optional[str]:
"""Find nearest weather station"""
try:
# Madrid area stations (simplified)
madrid_stations = {
"3195": {"lat": 40.4168, "lon": -3.7038, "name": "Madrid Centro"},
"3196": {"lat": 40.4518, "lon": -3.7246, "name": "Madrid Norte"},
"3197": {"lat": 40.3833, "lon": -3.7167, "name": "Madrid Sur"}
}
closest_station = None
min_distance = float('inf')
for station_id, station_data in madrid_stations.items():
distance = self._calculate_distance(
latitude, longitude,
station_data["lat"], station_data["lon"]
)
if distance < min_distance:
min_distance = distance
closest_station = station_id
return closest_station
except Exception as e:
logger.error("Failed to find nearest station", error=str(e))
return None
async def _get_municipality_code(self, latitude: float, longitude: float) -> Optional[str]:
"""Get municipality code for coordinates"""
# Madrid municipality code
if self._is_in_madrid_area(latitude, longitude):
return "28079" # Madrid municipality code
return None
def _is_in_madrid_area(self, latitude: float, longitude: float) -> bool:
"""Check if coordinates are in Madrid area"""
# Madrid approximate bounds
return (40.3 <= latitude <= 40.6) and (-3.9 <= longitude <= -3.5)
def _calculate_distance(self, lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""Calculate distance between two coordinates in km"""
R = 6371 # Earth's radius in km
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat/2) * math.sin(dlat/2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon/2) * math.sin(dlon/2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
distance = R * c
return distance
def _parse_weather_data(self, data: Dict) -> Dict[str, Any]:
"""Parse AEMET weather data format"""
if not isinstance(data, dict):
logger.warning("Weather data is not a dictionary", data_type=type(data))
return self._get_default_weather_data()
try:
return {
"date": datetime.now(),
"temperature": self._safe_float(data.get("ta"), 15.0), # Temperature
"precipitation": self._safe_float(data.get("prec"), 0.0), # Precipitation
"humidity": self._safe_float(data.get("hr"), 50.0), # Humidity
"wind_speed": self._safe_float(data.get("vv"), 10.0), # Wind speed
"pressure": self._safe_float(data.get("pres"), 1013.0), # Pressure
"description": str(data.get("descripcion", "Partly cloudy")),
"source": "aemet"
}
except Exception as e:
logger.error("Error parsing weather data", error=str(e), data=data)
return self._get_default_weather_data()
def _parse_forecast_data(self, data: List, days: int) -> List[Dict[str, Any]]:
"""Parse AEMET forecast data"""
forecast = []
base_date = datetime.now().date()
if not isinstance(data, list):
logger.warning("Forecast data is not a list", data_type=type(data))
return []
try:
# AEMET forecast data structure might be different
# For now, we'll generate synthetic data based on the number of days requested
for i in range(min(days, 14)): # Limit to reasonable forecast range
forecast_date = base_date + timedelta(days=i)
# Try to extract data from AEMET response if available
day_data = {}
if i < len(data) and isinstance(data[i], dict):
day_data = data[i]
forecast.append({
"forecast_date": datetime.combine(forecast_date, datetime.min.time()),
"generated_at": datetime.now(),
"temperature": self._safe_float(day_data.get("temperatura"), 15.0 + (i % 10)),
"precipitation": self._safe_float(day_data.get("precipitacion"), 0.0),
"humidity": self._safe_float(day_data.get("humedad"), 50.0 + (i % 20)),
"wind_speed": self._safe_float(day_data.get("viento"), 10.0 + (i % 15)),
"description": str(day_data.get("descripcion", "Partly cloudy")),
"source": "aemet"
})
except Exception as e:
logger.error("Error parsing forecast data", error=str(e))
return []
return forecast
def _safe_float(self, value: Any, default: float) -> float:
"""Safely convert value to float with fallback"""
try:
if value is None:
return default
return float(value)
except (ValueError, TypeError):
return default
def _get_default_weather_data(self) -> Dict[str, Any]:
"""Get default weather data structure"""
return {
"date": datetime.now(),
"temperature": 15.0,
"precipitation": 0.0,
"humidity": 50.0,
"wind_speed": 10.0,
"pressure": 1013.0,
"description": "Data not available",
"source": "default"
}
async def _generate_synthetic_weather(self) -> Dict[str, Any]:
"""Generate realistic synthetic weather for Madrid"""
now = datetime.now()
month = now.month
hour = now.hour
# Madrid climate simulation
base_temp = 5 + (month - 1) * 2.5 # Seasonal variation
temp_variation = math.sin((hour - 6) * math.pi / 12) * 8 # Daily variation
temperature = base_temp + temp_variation
# Rain probability (higher in winter)
rain_prob = 0.3 if month in [11, 12, 1, 2, 3] else 0.1
precipitation = 2.5 if hash(now.date()) % 100 < rain_prob * 100 else 0.0
return {
"date": now,
"temperature": round(temperature, 1),
"precipitation": precipitation,
"humidity": 45 + (month % 6) * 5,
"wind_speed": 8 + (hour % 12),
"pressure": 1013 + math.sin(now.day * 0.2) * 15,
"description": "Lluvioso" if precipitation > 0 else "Soleado",
"source": "synthetic"
}
async def _generate_synthetic_forecast(self, days: int) -> List[Dict[str, Any]]:
"""Generate synthetic forecast data"""
forecast = []
base_date = datetime.now().date()
for i in range(days):
forecast_date = base_date + timedelta(days=i)
# Seasonal temperature
month = forecast_date.month
base_temp = 5 + (month - 1) * 2.5
temp_variation = (i % 7 - 3) * 2 # Weekly variation
forecast.append({
"forecast_date": datetime.combine(forecast_date, datetime.min.time()),
"generated_at": datetime.now(),
"temperature": round(base_temp + temp_variation, 1),
"precipitation": 2.0 if i % 5 == 0 else 0.0,
"humidity": 50 + (i % 30),
"wind_speed": 10 + (i % 15),
"description": "Lluvioso" if i % 5 == 0 else "Soleado",
"source": "synthetic"
})
return forecast
async def _generate_synthetic_historical(self, start_date: datetime, end_date: datetime) -> List[Dict[str, Any]]:
"""Generate synthetic historical weather data"""
historical_data = []
current_date = start_date
while current_date <= end_date:
month = current_date.month
base_temp = 5 + (month - 1) * 2.5
# Add some randomness based on date
temp_variation = math.sin(current_date.day * 0.3) * 5
historical_data.append({
"date": current_date,
"temperature": round(base_temp + temp_variation, 1),
"precipitation": 1.5 if current_date.day % 7 == 0 else 0.0,
"humidity": 45 + (current_date.day % 40),
"wind_speed": 8 + (current_date.day % 20),
"pressure": 1013 + math.sin(current_date.day * 0.2) * 20,
"description": "Variable",
"source": "synthetic"
})
current_date += timedelta(days=1)
return historical_data