Files
bakery-ia/services/training/app/utils/ml_datetime.py
2025-10-12 23:16:04 +02:00

271 lines
6.4 KiB
Python

"""
ML-Specific DateTime Utilities
DateTime utilities for machine learning operations, specifically for:
- Prophet forecasting model (requires timezone-naive datetimes)
- Pandas DataFrame datetime operations
- Time series data processing
"""
from datetime import datetime, timezone
from typing import Union
import pandas as pd
import logging
logger = logging.getLogger(__name__)
def ensure_timezone_aware(dt: datetime, default_tz=timezone.utc) -> datetime:
"""
Ensure a datetime is timezone-aware.
Args:
dt: Datetime to check
default_tz: Timezone to apply if datetime is naive (default: UTC)
Returns:
Timezone-aware datetime
"""
if dt is None:
return None
if dt.tzinfo is None:
return dt.replace(tzinfo=default_tz)
return dt
def ensure_timezone_naive(dt: datetime) -> datetime:
"""
Remove timezone information from a datetime.
Args:
dt: Datetime to process
Returns:
Timezone-naive datetime
"""
if dt is None:
return None
if dt.tzinfo is not None:
return dt.replace(tzinfo=None)
return dt
def normalize_datetime_to_utc(dt: Union[datetime, pd.Timestamp]) -> datetime:
"""
Normalize any datetime to UTC timezone-aware datetime.
Args:
dt: Datetime or pandas Timestamp to normalize
Returns:
UTC timezone-aware datetime
"""
if dt is None:
return None
if isinstance(dt, pd.Timestamp):
dt = dt.to_pydatetime()
if dt.tzinfo is None:
return dt.replace(tzinfo=timezone.utc)
return dt.astimezone(timezone.utc)
def normalize_dataframe_datetime_column(
df: pd.DataFrame,
column: str,
target_format: str = 'naive'
) -> pd.DataFrame:
"""
Normalize a datetime column in a dataframe to consistent format.
Args:
df: DataFrame to process
column: Name of datetime column
target_format: 'naive' or 'aware' (UTC)
Returns:
DataFrame with normalized datetime column
"""
if column not in df.columns:
logger.warning(f"Column {column} not found in dataframe")
return df
df[column] = pd.to_datetime(df[column])
if target_format == 'naive':
if df[column].dt.tz is not None:
df[column] = df[column].dt.tz_localize(None)
elif target_format == 'aware':
if df[column].dt.tz is None:
df[column] = df[column].dt.tz_localize(timezone.utc)
else:
df[column] = df[column].dt.tz_convert(timezone.utc)
else:
raise ValueError(f"Invalid target_format: {target_format}. Must be 'naive' or 'aware'")
return df
def prepare_prophet_datetime(df: pd.DataFrame, datetime_col: str = 'ds') -> pd.DataFrame:
"""
Prepare datetime column for Prophet (requires timezone-naive datetimes).
Args:
df: DataFrame with datetime column
datetime_col: Name of datetime column (default: 'ds')
Returns:
DataFrame with Prophet-compatible datetime column
"""
df = df.copy()
df = normalize_dataframe_datetime_column(df, datetime_col, target_format='naive')
return df
def safe_datetime_comparison(dt1: datetime, dt2: datetime) -> int:
"""
Safely compare two datetimes, handling timezone mismatches.
Args:
dt1: First datetime
dt2: Second datetime
Returns:
-1 if dt1 < dt2, 0 if equal, 1 if dt1 > dt2
"""
dt1_utc = normalize_datetime_to_utc(dt1)
dt2_utc = normalize_datetime_to_utc(dt2)
if dt1_utc < dt2_utc:
return -1
elif dt1_utc > dt2_utc:
return 1
else:
return 0
def get_current_utc() -> datetime:
"""
Get current datetime in UTC with timezone awareness.
Returns:
Current UTC datetime
"""
return datetime.now(timezone.utc)
def convert_timestamp_to_datetime(timestamp: Union[int, float, str]) -> datetime:
"""
Convert various timestamp formats to datetime.
Args:
timestamp: Unix timestamp (seconds or milliseconds) or ISO string
Returns:
UTC timezone-aware datetime
"""
if isinstance(timestamp, str):
dt = pd.to_datetime(timestamp)
return normalize_datetime_to_utc(dt)
if timestamp > 1e10:
timestamp = timestamp / 1000
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
return dt
def align_dataframe_dates(
dfs: list[pd.DataFrame],
date_column: str = 'ds',
method: str = 'inner'
) -> list[pd.DataFrame]:
"""
Align multiple dataframes to have the same date range.
Args:
dfs: List of DataFrames to align
date_column: Name of the date column
method: 'inner' (intersection) or 'outer' (union)
Returns:
List of aligned DataFrames
"""
if not dfs:
return []
if len(dfs) == 1:
return dfs
all_dates = None
for df in dfs:
if date_column not in df.columns:
continue
dates = set(pd.to_datetime(df[date_column]).dt.date)
if all_dates is None:
all_dates = dates
else:
if method == 'inner':
all_dates = all_dates.intersection(dates)
elif method == 'outer':
all_dates = all_dates.union(dates)
aligned_dfs = []
for df in dfs:
if date_column not in df.columns:
aligned_dfs.append(df)
continue
df = df.copy()
df[date_column] = pd.to_datetime(df[date_column])
df['_date_only'] = df[date_column].dt.date
df = df[df['_date_only'].isin(all_dates)]
df = df.drop('_date_only', axis=1)
aligned_dfs.append(df)
return aligned_dfs
def fill_missing_dates(
df: pd.DataFrame,
date_column: str = 'ds',
freq: str = 'D',
fill_value: float = 0.0
) -> pd.DataFrame:
"""
Fill missing dates in a DataFrame with a specified frequency.
Args:
df: DataFrame with date column
date_column: Name of the date column
freq: Pandas frequency string ('D' for daily, 'H' for hourly, etc.)
fill_value: Value to fill for missing dates
Returns:
DataFrame with filled dates
"""
df = df.copy()
df[date_column] = pd.to_datetime(df[date_column])
df = df.set_index(date_column)
full_range = pd.date_range(
start=df.index.min(),
end=df.index.max(),
freq=freq
)
df = df.reindex(full_range, fill_value=fill_value)
df = df.reset_index()
df = df.rename(columns={'index': date_column})
return df