Files
bakery-ia/services/training/app/core/config.py
2025-07-19 21:44:52 +02:00

65 lines
3.0 KiB
Python

# ================================================================
# TRAINING SERVICE CONFIGURATION
# services/training/app/core/config.py
# ================================================================
"""
Training service configuration
ML model training and management
"""
from shared.config.base import BaseServiceSettings
import os
class TrainingSettings(BaseServiceSettings):
"""Training service specific settings"""
# Service Identity
APP_NAME: str = "Training Service"
SERVICE_NAME: str = "training-service"
DESCRIPTION: str = "Machine learning model training service"
# Database Configuration
DATABASE_URL: str = os.getenv("TRAINING_DATABASE_URL",
"postgresql+asyncpg://training_user:training_pass123@training-db:5432/training_db")
# Redis Database (dedicated for training cache)
REDIS_DB: int = 1
# ML Model Storage
MODEL_STORAGE_PATH: str = os.getenv("MODEL_STORAGE_PATH", "/app/models")
MODEL_BACKUP_ENABLED: bool = os.getenv("MODEL_BACKUP_ENABLED", "true").lower() == "true"
MODEL_VERSIONING_ENABLED: bool = os.getenv("MODEL_VERSIONING_ENABLED", "true").lower() == "true"
# Training Configuration
MAX_TRAINING_TIME_MINUTES: int = int(os.getenv("MAX_TRAINING_TIME_MINUTES", "30"))
MAX_CONCURRENT_TRAINING_JOBS: int = int(os.getenv("MAX_CONCURRENT_TRAINING_JOBS", "3"))
MIN_TRAINING_DATA_DAYS: int = int(os.getenv("MIN_TRAINING_DATA_DAYS", "30"))
TRAINING_BATCH_SIZE: int = int(os.getenv("TRAINING_BATCH_SIZE", "1000"))
# Prophet Specific Configuration
PROPHET_SEASONALITY_MODE: str = os.getenv("PROPHET_SEASONALITY_MODE", "additive")
PROPHET_CHANGEPOINT_PRIOR_SCALE: float = float(os.getenv("PROPHET_CHANGEPOINT_PRIOR_SCALE", "0.05"))
PROPHET_SEASONALITY_PRIOR_SCALE: float = float(os.getenv("PROPHET_SEASONALITY_PRIOR_SCALE", "10.0"))
PROPHET_HOLIDAYS_PRIOR_SCALE: float = float(os.getenv("PROPHET_HOLIDAYS_PRIOR_SCALE", "10.0"))
# Spanish Holiday Integration
ENABLE_SPANISH_HOLIDAYS: bool = True
ENABLE_MADRID_HOLIDAYS: bool = True
ENABLE_CUSTOM_HOLIDAYS: bool = os.getenv("ENABLE_CUSTOM_HOLIDAYS", "true").lower() == "true"
# Data Processing
DATA_PREPROCESSING_ENABLED: bool = True
OUTLIER_DETECTION_ENABLED: bool = os.getenv("OUTLIER_DETECTION_ENABLED", "true").lower() == "true"
SEASONAL_DECOMPOSITION_ENABLED: bool = os.getenv("SEASONAL_DECOMPOSITION_ENABLED", "true").lower() == "true"
# Model Validation
CROSS_VALIDATION_ENABLED: bool = os.getenv("CROSS_VALIDATION_ENABLED", "true").lower() == "true"
VALIDATION_SPLIT_RATIO: float = float(os.getenv("VALIDATION_SPLIT_RATIO", "0.2"))
MIN_MODEL_ACCURACY: float = float(os.getenv("MIN_MODEL_ACCURACY", "0.7"))
# Distributed Training (for future scaling)
DISTRIBUTED_TRAINING_ENABLED: bool = os.getenv("DISTRIBUTED_TRAINING_ENABLED", "false").lower() == "true"
TRAINING_WORKER_COUNT: int = int(os.getenv("TRAINING_WORKER_COUNT", "1"))
settings = TrainingSettings()