Files
bakery-ia/services/alert_processor/app/enrichment/business_impact.py
2025-12-09 10:21:41 +01:00

157 lines
5.6 KiB
Python

"""
Business impact analyzer for alerts.
Calculates financial impact, affected orders, customer impact, and other
business metrics from event metadata.
"""
from typing import Dict, Any
import structlog
logger = structlog.get_logger()
class BusinessImpactAnalyzer:
"""Analyze business impact from event metadata"""
def analyze(self, event_type: str, metadata: Dict[str, Any]) -> dict:
"""
Analyze business impact for an event.
Returns dict with:
- financial_impact_eur: Direct financial cost
- affected_orders: Number of orders impacted
- affected_customers: List of customer names
- production_delay_hours: Hours of production delay
- estimated_revenue_loss_eur: Potential revenue loss
- customer_impact: high/medium/low
- waste_risk_kg: Potential waste in kg
"""
impact = {
"financial_impact_eur": 0,
"affected_orders": 0,
"affected_customers": [],
"production_delay_hours": 0,
"estimated_revenue_loss_eur": 0,
"customer_impact": "low",
"waste_risk_kg": 0
}
# Stock-related impacts
if "stock" in event_type or "shortage" in event_type:
impact.update(self._analyze_stock_impact(metadata))
# Production-related impacts
elif "production" in event_type or "delay" in event_type or "equipment" in event_type:
impact.update(self._analyze_production_impact(metadata))
# Procurement-related impacts
elif "po_" in event_type or "delivery" in event_type:
impact.update(self._analyze_procurement_impact(metadata))
# Quality-related impacts
elif "quality" in event_type or "expired" in event_type:
impact.update(self._analyze_quality_impact(metadata))
return impact
def _analyze_stock_impact(self, metadata: Dict[str, Any]) -> dict:
"""Analyze impact of stock-related alerts"""
impact = {}
# Calculate financial impact
shortage_amount = metadata.get("shortage_amount", 0)
unit_cost = metadata.get("unit_cost", 5) # Default €5/kg
impact["financial_impact_eur"] = float(shortage_amount) * unit_cost
# Affected orders from metadata
impact["affected_orders"] = metadata.get("affected_orders", 0)
# Customer impact based on affected orders
if impact["affected_orders"] > 5:
impact["customer_impact"] = "high"
elif impact["affected_orders"] > 2:
impact["customer_impact"] = "medium"
# Revenue loss (estimated)
avg_order_value = 50 # €50 per order
impact["estimated_revenue_loss_eur"] = impact["affected_orders"] * avg_order_value
return impact
def _analyze_production_impact(self, metadata: Dict[str, Any]) -> dict:
"""Analyze impact of production-related alerts"""
impact = {}
# Delay minutes to hours
delay_minutes = metadata.get("delay_minutes", 0)
impact["production_delay_hours"] = round(delay_minutes / 60, 1)
# Affected orders and customers
impact["affected_orders"] = metadata.get("affected_orders", 0)
customer_names = metadata.get("customer_names", [])
impact["affected_customers"] = customer_names
# Customer impact based on delay
if delay_minutes > 120: # 2+ hours
impact["customer_impact"] = "high"
elif delay_minutes > 60: # 1+ hours
impact["customer_impact"] = "medium"
# Financial impact: hourly production cost
hourly_cost = 100 # €100/hour operational cost
impact["financial_impact_eur"] = impact["production_delay_hours"] * hourly_cost
# Revenue loss
if impact["affected_orders"] > 0:
avg_order_value = 50
impact["estimated_revenue_loss_eur"] = impact["affected_orders"] * avg_order_value
return impact
def _analyze_procurement_impact(self, metadata: Dict[str, Any]) -> dict:
"""Analyze impact of procurement-related alerts"""
impact = {}
# Extract potential_loss_eur from reasoning_data.parameters
reasoning_data = metadata.get("reasoning_data", {})
parameters = reasoning_data.get("parameters", {})
potential_loss_eur = parameters.get("potential_loss_eur")
# Use potential loss from reasoning as financial impact (what's at risk)
# Fallback to PO amount only if reasoning data is not available
if potential_loss_eur is not None:
impact["financial_impact_eur"] = float(potential_loss_eur)
else:
po_amount = metadata.get("po_amount", metadata.get("total_amount", 0))
impact["financial_impact_eur"] = float(po_amount)
# Days overdue affects customer impact
days_overdue = metadata.get("days_overdue", 0)
if days_overdue > 3:
impact["customer_impact"] = "high"
elif days_overdue > 1:
impact["customer_impact"] = "medium"
return impact
def _analyze_quality_impact(self, metadata: Dict[str, Any]) -> dict:
"""Analyze impact of quality-related alerts"""
impact = {}
# Expired products
expired_count = metadata.get("expired_count", 0)
total_value = metadata.get("total_value", 0)
impact["financial_impact_eur"] = float(total_value)
impact["waste_risk_kg"] = metadata.get("total_quantity_kg", 0)
if expired_count > 5:
impact["customer_impact"] = "high"
elif expired_count > 2:
impact["customer_impact"] = "medium"
return impact