Files
bakery-ia/services/data/app/external/processors/madrid_business_logic.py
2025-08-10 18:32:47 +02:00

346 lines
15 KiB
Python

# ================================================================
# services/data/app/external/processors/madrid_business_logic.py
# ================================================================
"""
Business rules, inference, and domain logic for Madrid traffic data
Handles pedestrian inference, district mapping, road classification, and validation
"""
import math
import re
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
import structlog
from ..models.madrid_models import TrafficRecord, CongestionLevel
class MadridTrafficAnalyzer:
"""Handles business logic for Madrid traffic analysis"""
# Madrid district characteristics for pedestrian patterns
DISTRICT_MULTIPLIERS = {
'Centro': 2.5, # Historic center, high pedestrian activity
'Salamanca': 2.0, # Shopping area, high foot traffic
'Chamberí': 1.8, # Business district
'Retiro': 2.2, # Near park, high leisure activity
'Chamartín': 1.6, # Business/residential
'Tetuán': 1.4, # Mixed residential/commercial
'Fuencarral': 1.3, # Residential with commercial areas
'Moncloa': 1.7, # University area
'Latina': 1.5, # Residential area
'Carabanchel': 1.2, # Residential periphery
'Usera': 1.1, # Industrial/residential
'Villaverde': 1.0, # Industrial area
'Villa de Vallecas': 1.0, # Peripheral residential
'Vicálvaro': 0.9, # Peripheral
'San Blas': 1.1, # Residential
'Barajas': 0.8, # Airport area, low pedestrian activity
'Hortaleza': 1.2, # Mixed area
'Ciudad Lineal': 1.3, # Linear development
'Puente de Vallecas': 1.2, # Working class area
'Moratalaz': 1.1, # Residential
'Arganzuela': 1.6, # Near center, growing area
}
# Time-based patterns (hour of day)
TIME_PATTERNS = {
'morning_peak': {'hours': [7, 8, 9], 'multiplier': 2.0},
'lunch_peak': {'hours': [12, 13, 14], 'multiplier': 2.5},
'evening_peak': {'hours': [18, 19, 20], 'multiplier': 2.2},
'afternoon': {'hours': [15, 16, 17], 'multiplier': 1.8},
'late_evening': {'hours': [21, 22], 'multiplier': 1.5},
'night': {'hours': [23, 0, 1, 2, 3, 4, 5, 6], 'multiplier': 0.3},
'morning': {'hours': [10, 11], 'multiplier': 1.4}
}
# Road type specific patterns
ROAD_TYPE_BASE = {
'URB': 250, # Urban streets - high pedestrian activity
'M30': 50, # Ring road - minimal pedestrians
'C30': 75, # Secondary ring - some pedestrian access
'A': 25, # Highways - very low pedestrians
'R': 40 # Radial roads - low to moderate
}
# Weather impact on pedestrian activity
WEATHER_IMPACT = {
'rain': 0.6, # 40% reduction in rain
'hot_weather': 0.8, # 20% reduction when very hot
'cold_weather': 0.7, # 30% reduction when very cold
'normal': 1.0 # No impact
}
def __init__(self):
self.logger = structlog.get_logger()
def calculate_pedestrian_flow(
self,
traffic_record: TrafficRecord,
location_context: Optional[Dict[str, Any]] = None
) -> Tuple[int, Dict[str, float]]:
"""
Calculate pedestrian flow estimate with detailed metadata
Returns:
Tuple of (pedestrian_count, inference_metadata)
"""
# Base calculation from road type
road_type = traffic_record.road_type or 'URB'
base_pedestrians = self.ROAD_TYPE_BASE.get(road_type, 200)
# Time pattern adjustment
hour = traffic_record.date.hour
time_factor = self._get_time_pattern_factor(hour)
# District adjustment (if available)
district_factor = 1.0
district = traffic_record.district or self.infer_district_from_location(location_context)
if district:
district_factor = self.DISTRICT_MULTIPLIERS.get(district, 1.0)
# Traffic correlation adjustment
traffic_factor = self._calculate_traffic_correlation(traffic_record)
# Weather adjustment (if data available)
weather_factor = self._get_weather_factor(traffic_record.date, location_context)
# Weekend adjustment
weekend_factor = self._get_weekend_factor(traffic_record.date)
# Combined calculation
pedestrian_count = int(
base_pedestrians *
time_factor *
district_factor *
traffic_factor *
weather_factor *
weekend_factor
)
# Ensure reasonable bounds
pedestrian_count = max(10, min(2000, pedestrian_count))
# Metadata for model training
inference_metadata = {
'base_pedestrians': base_pedestrians,
'time_factor': time_factor,
'district_factor': district_factor,
'traffic_factor': traffic_factor,
'weather_factor': weather_factor,
'weekend_factor': weekend_factor,
'inferred_district': district,
'hour': hour,
'road_type': road_type
}
return pedestrian_count, inference_metadata
def _get_time_pattern_factor(self, hour: int) -> float:
"""Get time-based pedestrian activity multiplier"""
for pattern, config in self.TIME_PATTERNS.items():
if hour in config['hours']:
return config['multiplier']
return 1.0 # Default multiplier
def _calculate_traffic_correlation(self, traffic_record: TrafficRecord) -> float:
"""
Calculate pedestrian correlation with traffic patterns
Higher traffic in urban areas often correlates with more pedestrians
"""
if traffic_record.road_type == 'URB':
# Urban areas: moderate traffic indicates commercial activity
if 30 <= traffic_record.load_percentage <= 70:
return 1.3 # Sweet spot for pedestrian activity
elif traffic_record.load_percentage > 70:
return 0.9 # Too congested, pedestrians avoid
else:
return 1.0 # Normal correlation
else:
# Highway/ring roads: more traffic = fewer pedestrians
if traffic_record.load_percentage > 60:
return 0.5
else:
return 0.8
def _get_weather_factor(self, date: datetime, location_context: Optional[Dict] = None) -> float:
"""Estimate weather impact on pedestrian activity"""
# Simplified weather inference based on season and typical Madrid patterns
month = date.month
# Madrid seasonal patterns
if month in [12, 1, 2]: # Winter - cold weather impact
return self.WEATHER_IMPACT['cold_weather']
elif month in [7, 8]: # Summer - hot weather impact
return self.WEATHER_IMPACT['hot_weather']
elif month in [10, 11, 3, 4]: # Rainy seasons - moderate impact
return 0.85
else: # Spring/early summer - optimal weather
return 1.1
def _get_weekend_factor(self, date: datetime) -> float:
"""Weekend vs weekday pedestrian patterns"""
weekday = date.weekday()
hour = date.hour
if weekday >= 5: # Weekend
if 11 <= hour <= 16: # Weekend shopping/leisure hours
return 1.4
elif 20 <= hour <= 23: # Weekend evening activity
return 1.3
else:
return 0.9
else: # Weekday
return 1.0
def infer_district_from_location(self, location_context: Optional[Dict] = None) -> Optional[str]:
"""
Infer Madrid district from location context or coordinates
"""
if not location_context:
return None
lat = location_context.get('latitude')
lon = location_context.get('longitude')
if not (lat and lon):
return None
# Madrid district boundaries (simplified boundaries for inference)
districts = {
# Central districts
'Centro': {'lat_min': 40.405, 'lat_max': 40.425, 'lon_min': -3.720, 'lon_max': -3.690},
'Arganzuela': {'lat_min': 40.385, 'lat_max': 40.410, 'lon_min': -3.720, 'lon_max': -3.680},
'Retiro': {'lat_min': 40.405, 'lat_max': 40.425, 'lon_min': -3.690, 'lon_max': -3.660},
'Salamanca': {'lat_min': 40.420, 'lat_max': 40.445, 'lon_min': -3.690, 'lon_max': -3.660},
'Chamartín': {'lat_min': 40.445, 'lat_max': 40.480, 'lon_min': -3.690, 'lon_max': -3.660},
'Tetuán': {'lat_min': 40.445, 'lat_max': 40.470, 'lon_min': -3.720, 'lon_max': -3.690},
'Chamberí': {'lat_min': 40.425, 'lat_max': 40.450, 'lon_min': -3.720, 'lon_max': -3.690},
'Fuencarral-El Pardo': {'lat_min': 40.470, 'lat_max': 40.540, 'lon_min': -3.750, 'lon_max': -3.650},
'Moncloa-Aravaca': {'lat_min': 40.430, 'lat_max': 40.480, 'lon_min': -3.750, 'lon_max': -3.720},
'Latina': {'lat_min': 40.380, 'lat_max': 40.420, 'lon_min': -3.750, 'lon_max': -3.720},
'Carabanchel': {'lat_min': 40.350, 'lat_max': 40.390, 'lon_min': -3.750, 'lon_max': -3.720},
'Usera': {'lat_min': 40.350, 'lat_max': 40.385, 'lon_min': -3.720, 'lon_max': -3.690},
'Puente de Vallecas': {'lat_min': 40.370, 'lat_max': 40.410, 'lon_min': -3.680, 'lon_max': -3.640},
'Moratalaz': {'lat_min': 40.400, 'lat_max': 40.430, 'lon_min': -3.650, 'lon_max': -3.620},
'Ciudad Lineal': {'lat_min': 40.430, 'lat_max': 40.460, 'lon_min': -3.650, 'lon_max': -3.620},
'Hortaleza': {'lat_min': 40.460, 'lat_max': 40.500, 'lon_min': -3.650, 'lon_max': -3.620},
'Villaverde': {'lat_min': 40.320, 'lat_max': 40.360, 'lon_min': -3.720, 'lon_max': -3.680},
}
# Find matching district
for district_name, bounds in districts.items():
if (bounds['lat_min'] <= lat <= bounds['lat_max'] and
bounds['lon_min'] <= lon <= bounds['lon_max']):
return district_name
# Default for coordinates in Madrid but not matching specific districts
if 40.3 <= lat <= 40.6 and -3.8 <= lon <= -3.5:
return 'Other Madrid'
return None
def classify_road_type(self, measurement_point_name: str) -> str:
"""Classify road type based on measurement point name"""
if not measurement_point_name:
return 'URB' # Default to urban
name_upper = measurement_point_name.upper()
# Highway patterns
if any(pattern in name_upper for pattern in ['A-', 'AP-', 'AUTOPISTA', 'AUTOVIA']):
return 'A'
# M-30 Ring road
if 'M-30' in name_upper or 'M30' in name_upper:
return 'M30'
# Other M roads (ring roads)
if re.search(r'M-[0-9]', name_upper) or re.search(r'M[0-9]', name_upper):
return 'C30'
# Radial roads (R-1, R-2, etc.)
if re.search(r'R-[0-9]', name_upper) or 'RADIAL' in name_upper:
return 'R'
# Default to urban street
return 'URB'
def validate_madrid_coordinates(self, lat: float, lon: float) -> bool:
"""Validate coordinates are within Madrid bounds"""
# Madrid metropolitan area bounds
return 40.3 <= lat <= 40.6 and -3.8 <= lon <= -3.5
def get_congestion_level(self, occupation_pct: float) -> str:
"""Convert occupation percentage to congestion level"""
if occupation_pct >= 80:
return CongestionLevel.BLOCKED.value
elif occupation_pct >= 50:
return CongestionLevel.HIGH.value
elif occupation_pct >= 25:
return CongestionLevel.MEDIUM.value
else:
return CongestionLevel.LOW.value
def calculate_distance(self, lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""Calculate distance between two points in kilometers using Haversine formula"""
R = 6371 # Earth's radius in kilometers
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat/2) * math.sin(dlat/2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon/2) * math.sin(dlon/2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
return R * c
def find_nearest_traffic_point(self, traffic_points: List[Dict[str, Any]],
latitude: float, longitude: float) -> Optional[Dict[str, Any]]:
"""Find the nearest traffic point to given coordinates"""
if not traffic_points:
return None
min_distance = float('inf')
nearest_point = None
for point in traffic_points:
point_lat = point.get('latitude')
point_lon = point.get('longitude')
if point_lat and point_lon:
distance = self.calculate_distance(latitude, longitude, point_lat, point_lon)
if distance < min_distance:
min_distance = distance
nearest_point = point
return nearest_point
def find_nearest_measurement_points(self, measurement_points: Dict[str, Dict[str, Any]],
latitude: float, longitude: float,
num_points: int = 3, max_distance_km: Optional[float] = 5.0) -> List[Tuple[str, Dict[str, Any], float]]:
"""Find nearest measurement points for historical data"""
distances = []
for point_id, point_data in measurement_points.items():
point_lat = point_data.get('latitude')
point_lon = point_data.get('longitude')
if point_lat and point_lon:
distance_km = self.calculate_distance(latitude, longitude, point_lat, point_lon)
distances.append((point_id, point_data, distance_km))
# Sort by distance and take nearest points
distances.sort(key=lambda x: x[2])
# Apply distance filter if specified
if max_distance_km is not None:
distances = [p for p in distances if p[2] <= max_distance_km]
nearest = distances[:num_points]
self.logger.info("Found nearest measurement points",
count=len(nearest),
nearest_distance_km=nearest[0][2] if nearest else None)
return nearest