Files
bakery-ia/services/training/app/services/tenant_deletion_service.py
2025-12-05 20:07:01 +01:00

340 lines
13 KiB
Python

# services/training/app/services/tenant_deletion_service.py
"""
Tenant Data Deletion Service for Training Service
Handles deletion of all training-related data for a tenant
"""
from typing import Dict
from sqlalchemy import select, func, delete
from sqlalchemy.ext.asyncio import AsyncSession
import structlog
from shared.services.tenant_deletion import (
BaseTenantDataDeletionService,
TenantDataDeletionResult
)
from app.models import (
TrainedModel,
ModelTrainingLog,
ModelPerformanceMetric,
TrainingJobQueue,
ModelArtifact,
AuditLog
)
logger = structlog.get_logger(__name__)
class TrainingTenantDeletionService(BaseTenantDataDeletionService):
"""Service for deleting all training-related data for a tenant"""
def __init__(self, db: AsyncSession):
self.db = db
self.service_name = "training"
async def get_tenant_data_preview(self, tenant_id: str) -> Dict[str, int]:
"""
Get counts of what would be deleted for a tenant (dry-run)
Args:
tenant_id: The tenant ID to preview deletion for
Returns:
Dictionary with entity names and their counts
"""
logger.info("training.tenant_deletion.preview", tenant_id=tenant_id)
preview = {}
try:
# Count trained models
model_count = await self.db.scalar(
select(func.count(TrainedModel.id)).where(
TrainedModel.tenant_id == tenant_id
)
)
preview["trained_models"] = model_count or 0
# Count model artifacts
artifact_count = await self.db.scalar(
select(func.count(ModelArtifact.id)).where(
ModelArtifact.tenant_id == tenant_id
)
)
preview["model_artifacts"] = artifact_count or 0
# Count training logs
log_count = await self.db.scalar(
select(func.count(ModelTrainingLog.id)).where(
ModelTrainingLog.tenant_id == tenant_id
)
)
preview["model_training_logs"] = log_count or 0
# Count performance metrics
metric_count = await self.db.scalar(
select(func.count(ModelPerformanceMetric.id)).where(
ModelPerformanceMetric.tenant_id == tenant_id
)
)
preview["model_performance_metrics"] = metric_count or 0
# Count training job queue entries
queue_count = await self.db.scalar(
select(func.count(TrainingJobQueue.id)).where(
TrainingJobQueue.tenant_id == tenant_id
)
)
preview["training_job_queue"] = queue_count or 0
# Count audit logs
audit_count = await self.db.scalar(
select(func.count(AuditLog.id)).where(
AuditLog.tenant_id == tenant_id
)
)
preview["audit_logs"] = audit_count or 0
logger.info(
"training.tenant_deletion.preview_complete",
tenant_id=tenant_id,
preview=preview
)
except Exception as e:
logger.error(
"training.tenant_deletion.preview_error",
tenant_id=tenant_id,
error=str(e),
exc_info=True
)
raise
return preview
async def delete_tenant_data(self, tenant_id: str) -> TenantDataDeletionResult:
"""
Permanently delete all training data for a tenant
Deletion order:
1. ModelArtifact (references models)
2. ModelPerformanceMetric (references models)
3. ModelTrainingLog (independent job logs)
4. TrainingJobQueue (independent queue entries)
5. TrainedModel (parent model records)
6. AuditLog (independent)
Note: This also deletes physical model files from disk/storage
Args:
tenant_id: The tenant ID to delete data for
Returns:
TenantDataDeletionResult with deletion counts and any errors
"""
logger.info("training.tenant_deletion.started", tenant_id=tenant_id)
result = TenantDataDeletionResult(tenant_id=tenant_id, service_name=self.service_name)
try:
import os
# Step 1: Delete model artifacts (references models)
logger.info("training.tenant_deletion.deleting_artifacts", tenant_id=tenant_id)
# Delete physical files from storage before deleting DB records
artifacts = await self.db.execute(
select(ModelArtifact).where(ModelArtifact.tenant_id == tenant_id)
)
deleted_files = 0
failed_files = 0
for artifact in artifacts.scalars():
try:
if artifact.file_path and os.path.exists(artifact.file_path):
os.remove(artifact.file_path)
deleted_files += 1
logger.info("Deleted artifact file",
path=artifact.file_path,
artifact_id=artifact.id)
except Exception as e:
failed_files += 1
logger.warning("Failed to delete artifact file",
path=artifact.file_path,
artifact_id=artifact.id if hasattr(artifact, 'id') else 'unknown',
error=str(e))
logger.info("Artifact files deletion complete",
deleted_files=deleted_files,
failed_files=failed_files)
# Now delete DB records
artifacts_result = await self.db.execute(
delete(ModelArtifact).where(
ModelArtifact.tenant_id == tenant_id
)
)
result.deleted_counts["model_artifacts"] = artifacts_result.rowcount
result.deleted_counts["artifact_files_deleted"] = deleted_files
result.deleted_counts["artifact_files_failed"] = failed_files
logger.info(
"training.tenant_deletion.artifacts_deleted",
tenant_id=tenant_id,
count=artifacts_result.rowcount
)
# Step 2: Delete model performance metrics
logger.info("training.tenant_deletion.deleting_metrics", tenant_id=tenant_id)
metrics_result = await self.db.execute(
delete(ModelPerformanceMetric).where(
ModelPerformanceMetric.tenant_id == tenant_id
)
)
result.deleted_counts["model_performance_metrics"] = metrics_result.rowcount
logger.info(
"training.tenant_deletion.metrics_deleted",
tenant_id=tenant_id,
count=metrics_result.rowcount
)
# Step 3: Delete training logs
logger.info("training.tenant_deletion.deleting_logs", tenant_id=tenant_id)
logs_result = await self.db.execute(
delete(ModelTrainingLog).where(
ModelTrainingLog.tenant_id == tenant_id
)
)
result.deleted_counts["model_training_logs"] = logs_result.rowcount
logger.info(
"training.tenant_deletion.logs_deleted",
tenant_id=tenant_id,
count=logs_result.rowcount
)
# Step 4: Delete training job queue entries
logger.info("training.tenant_deletion.deleting_queue", tenant_id=tenant_id)
queue_result = await self.db.execute(
delete(TrainingJobQueue).where(
TrainingJobQueue.tenant_id == tenant_id
)
)
result.deleted_counts["training_job_queue"] = queue_result.rowcount
logger.info(
"training.tenant_deletion.queue_deleted",
tenant_id=tenant_id,
count=queue_result.rowcount
)
# Step 5: Delete trained models (parent records)
logger.info("training.tenant_deletion.deleting_models", tenant_id=tenant_id)
# Delete physical model files (.pkl) before deleting DB records
models = await self.db.execute(
select(TrainedModel).where(TrainedModel.tenant_id == tenant_id)
)
deleted_model_files = 0
failed_model_files = 0
for model in models.scalars():
try:
# Delete .pkl file
if hasattr(model, 'model_path') and model.model_path and os.path.exists(model.model_path):
os.remove(model.model_path)
deleted_model_files += 1
logger.info("Deleted model file",
path=model.model_path,
model_id=model.id)
# Delete model_file_path if it exists
if hasattr(model, 'model_file_path') and model.model_file_path and os.path.exists(model.model_file_path):
os.remove(model.model_file_path)
deleted_model_files += 1
logger.info("Deleted model file",
path=model.model_file_path,
model_id=model.id)
# Delete metadata file if exists
if hasattr(model, 'metadata_path') and model.metadata_path and os.path.exists(model.metadata_path):
os.remove(model.metadata_path)
logger.info("Deleted metadata file",
path=model.metadata_path,
model_id=model.id)
except Exception as e:
failed_model_files += 1
logger.warning("Failed to delete model file",
path=getattr(model, 'model_path', getattr(model, 'model_file_path', 'unknown')),
model_id=model.id if hasattr(model, 'id') else 'unknown',
error=str(e))
logger.info("Model files deletion complete",
deleted_files=deleted_model_files,
failed_files=failed_model_files)
# Now delete DB records
models_result = await self.db.execute(
delete(TrainedModel).where(
TrainedModel.tenant_id == tenant_id
)
)
result.deleted_counts["trained_models"] = models_result.rowcount
result.deleted_counts["model_files_deleted"] = deleted_model_files
result.deleted_counts["model_files_failed"] = failed_model_files
logger.info(
"training.tenant_deletion.models_deleted",
tenant_id=tenant_id,
count=models_result.rowcount
)
# Step 6: Delete audit logs
logger.info("training.tenant_deletion.deleting_audit_logs", tenant_id=tenant_id)
audit_result = await self.db.execute(
delete(AuditLog).where(
AuditLog.tenant_id == tenant_id
)
)
result.deleted_counts["audit_logs"] = audit_result.rowcount
logger.info(
"training.tenant_deletion.audit_logs_deleted",
tenant_id=tenant_id,
count=audit_result.rowcount
)
# Commit the transaction
await self.db.commit()
# Calculate total deleted
total_deleted = sum(result.deleted_counts.values())
logger.info(
"training.tenant_deletion.completed",
tenant_id=tenant_id,
total_deleted=total_deleted,
breakdown=result.deleted_counts,
note="Physical model files should be cleaned up separately"
)
result.success = True
except Exception as e:
await self.db.rollback()
error_msg = f"Failed to delete training data for tenant {tenant_id}: {str(e)}"
logger.error(
"training.tenant_deletion.failed",
tenant_id=tenant_id,
error=str(e),
exc_info=True
)
result.errors.append(error_msg)
result.success = False
return result
def get_training_tenant_deletion_service(
db: AsyncSession
) -> TrainingTenantDeletionService:
"""
Factory function to create TrainingTenantDeletionService instance
Args:
db: AsyncSession database session
Returns:
TrainingTenantDeletionService instance
"""
return TrainingTenantDeletionService(db)