Files
bakery-ia/services/sales/app/services/sales_service.py
2025-12-16 13:32:33 +01:00

657 lines
28 KiB
Python

# services/sales/app/services/sales_service.py
"""
Sales Service - Business Logic Layer
"""
from typing import List, Optional, Dict, Any
from uuid import UUID
from datetime import datetime
import structlog
from app.models.sales import SalesData
from app.repositories.sales_repository import SalesRepository
from app.schemas.sales import SalesDataCreate, SalesDataUpdate, SalesDataQuery, SalesAnalytics
from app.core.database import get_db_transaction
from app.services.inventory_client import InventoryServiceClient
from shared.database.exceptions import DatabaseError
logger = structlog.get_logger()
class SalesService:
"""Service layer for sales operations"""
def __init__(self):
self.inventory_client = InventoryServiceClient()
async def create_sales_record(
self,
sales_data: SalesDataCreate,
tenant_id: UUID,
user_id: Optional[UUID] = None
) -> SalesData:
"""Create a new sales record with business validation"""
try:
# Sync product data with inventory service if inventory_product_id is provided
if sales_data.inventory_product_id:
product_cache = await self.inventory_client.sync_product_cache(
sales_data.inventory_product_id, tenant_id
)
if product_cache:
# Update cached product fields from inventory
sales_data_dict = sales_data.model_dump()
sales_data_dict.update(product_cache)
sales_data = SalesDataCreate(**sales_data_dict)
else:
logger.warning("Could not sync product from inventory",
product_id=sales_data.inventory_product_id, tenant_id=tenant_id)
# Business validation
await self._validate_sales_data(sales_data, tenant_id)
# Set user who created the record
if user_id:
sales_data_dict = sales_data.model_dump()
sales_data_dict['created_by'] = user_id
sales_data = SalesDataCreate(**sales_data_dict)
async with get_db_transaction() as db:
repository = SalesRepository(db)
record = await repository.create_sales_record(sales_data, tenant_id)
# Additional business logic (e.g., notifications, analytics updates)
await self._post_create_actions(record)
return record
except Exception as e:
logger.error("Failed to create sales record in service", error=str(e), tenant_id=tenant_id)
raise
async def update_sales_record(
self,
record_id: UUID,
update_data: SalesDataUpdate,
tenant_id: UUID
) -> SalesData:
"""Update a sales record"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
# Verify record belongs to tenant
existing_record = await repository.get_by_id(record_id)
if not existing_record or existing_record.tenant_id != tenant_id:
raise ValueError(f"Sales record {record_id} not found for tenant {tenant_id}")
# Update the record
updated_record = await repository.update(record_id, update_data.model_dump(exclude_unset=True))
logger.info("Updated sales record", record_id=record_id, tenant_id=tenant_id)
return updated_record
except Exception as e:
logger.error("Failed to update sales record", error=str(e), record_id=record_id, tenant_id=tenant_id)
raise
async def get_sales_records(
self,
tenant_id: UUID,
query_params: Optional[SalesDataQuery] = None
) -> List[SalesData]:
"""Get sales records for a tenant"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
records = await repository.get_by_tenant(tenant_id, query_params)
logger.info("Retrieved sales records", count=len(records), tenant_id=tenant_id)
return records
except Exception as e:
logger.error("Failed to get sales records", error=str(e), tenant_id=tenant_id)
raise
async def get_sales_record(self, record_id: UUID, tenant_id: UUID) -> Optional[SalesData]:
"""Get a specific sales record"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
record = await repository.get_by_id(record_id)
# Verify record belongs to tenant
if record and record.tenant_id != tenant_id:
return None
return record
except Exception as e:
logger.error("Failed to get sales record", error=str(e), record_id=record_id, tenant_id=tenant_id)
raise
async def delete_sales_record(self, record_id: UUID, tenant_id: UUID) -> bool:
"""Delete a sales record"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
# Verify record belongs to tenant
existing_record = await repository.get_by_id(record_id)
if not existing_record or existing_record.tenant_id != tenant_id:
raise ValueError(f"Sales record {record_id} not found for tenant {tenant_id}")
success = await repository.delete(record_id)
if success:
logger.info("Deleted sales record", record_id=record_id, tenant_id=tenant_id)
return success
except Exception as e:
logger.error("Failed to delete sales record", error=str(e), record_id=record_id, tenant_id=tenant_id)
raise
async def get_product_sales(
self,
tenant_id: UUID,
inventory_product_id: UUID,
start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None
) -> List[SalesData]:
"""Get sales records for a specific product by inventory ID"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
records = await repository.get_by_inventory_product(tenant_id, inventory_product_id, start_date, end_date)
logger.info(
"Retrieved product sales",
count=len(records),
inventory_product_id=inventory_product_id,
tenant_id=tenant_id
)
return records
except Exception as e:
logger.error("Failed to get product sales", error=str(e), tenant_id=tenant_id, inventory_product_id=inventory_product_id)
raise
async def get_sales_analytics(
self,
tenant_id: UUID,
start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None
) -> Dict[str, Any]:
"""Get sales analytics for a tenant"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
analytics = await repository.get_analytics(tenant_id, start_date, end_date)
logger.info("Retrieved sales analytics", tenant_id=tenant_id)
return analytics
except Exception as e:
logger.error("Failed to get sales analytics", error=str(e), tenant_id=tenant_id)
raise
async def get_product_categories(self, tenant_id: UUID) -> List[str]:
"""Get distinct product categories from inventory service"""
try:
# Get all unique categories from inventory service products
# This is more accurate than cached categories in sales data
ingredient_products = await self.inventory_client.search_products("", tenant_id, "ingredient")
finished_products = await self.inventory_client.search_products("", tenant_id, "finished_product")
categories = set()
for product in ingredient_products:
if product.get("ingredient_category"):
categories.add(product["ingredient_category"])
for product in finished_products:
if product.get("product_category"):
categories.add(product["product_category"])
return sorted(list(categories))
except Exception as e:
logger.error("Failed to get product categories", error=str(e), tenant_id=tenant_id)
raise
async def validate_sales_record(
self,
record_id: UUID,
tenant_id: UUID,
validation_notes: Optional[str] = None
) -> SalesData:
"""Validate a sales record"""
try:
async with get_db_transaction() as db:
repository = SalesRepository(db)
# Verify record belongs to tenant
existing_record = await repository.get_by_id(record_id)
if not existing_record or existing_record.tenant_id != tenant_id:
raise ValueError(f"Sales record {record_id} not found for tenant {tenant_id}")
validated_record = await repository.validate_record(record_id, validation_notes)
logger.info("Validated sales record", record_id=record_id, tenant_id=tenant_id)
return validated_record
except Exception as e:
logger.error("Failed to validate sales record", error=str(e), record_id=record_id, tenant_id=tenant_id)
raise
async def _validate_sales_data(self, sales_data: SalesDataCreate, tenant_id: UUID):
"""Validate sales data according to business rules"""
# Example business validations
# Check if revenue matches quantity * unit_price (if unit_price provided)
if sales_data.unit_price and sales_data.quantity_sold:
expected_revenue = sales_data.unit_price * sales_data.quantity_sold
# Apply discount if any
if sales_data.discount_applied:
expected_revenue *= (1 - sales_data.discount_applied / 100)
# Allow for small rounding differences
if abs(float(sales_data.revenue) - float(expected_revenue)) > 0.01:
logger.warning(
"Revenue mismatch detected",
expected=float(expected_revenue),
actual=float(sales_data.revenue),
tenant_id=tenant_id
)
# Check date validity (not in future)
if sales_data.date > datetime.utcnow():
raise ValueError("Sales date cannot be in the future")
# Additional business rules can be added here
logger.info("Sales data validation passed", tenant_id=tenant_id)
async def _post_create_actions(self, record: SalesData):
"""Actions to perform after creating a sales record"""
try:
# Decrease inventory for the sale
if record.inventory_product_id and record.quantity_sold and record.quantity_sold > 0:
await self._decrease_inventory_for_sale(record)
# Here you could also:
# - Send notifications
# - Update analytics caches
# - Trigger ML model updates
logger.info("Post-create actions completed", record_id=record.id)
except Exception as e:
# Don't fail the main operation for auxiliary actions
logger.warning("Failed to execute post-create actions", error=str(e), record_id=record.id)
async def _decrease_inventory_for_sale(self, sales_record: SalesData) -> Optional[Dict[str, Any]]:
"""Decrease inventory stock for a sales record"""
try:
if not sales_record.inventory_product_id:
logger.debug("No inventory_product_id for sales record, skipping stock decrease",
record_id=sales_record.id)
return None
if not sales_record.quantity_sold or sales_record.quantity_sold <= 0:
logger.debug("Invalid quantity for sales record, skipping stock decrease",
record_id=sales_record.id, quantity=sales_record.quantity_sold)
return None
consumption_data = {
"ingredient_id": str(sales_record.inventory_product_id),
"quantity": float(sales_record.quantity_sold),
"reference_number": str(sales_record.id),
"notes": f"Sales: {sales_record.product_name} - {sales_record.sales_channel}",
"fifo": True # Use FIFO method for stock consumption
}
result = await self.inventory_client._shared_client.consume_stock(
consumption_data,
str(sales_record.tenant_id)
)
if result:
logger.info("Inventory decreased for sale",
sales_record_id=sales_record.id,
inventory_product_id=sales_record.inventory_product_id,
quantity=sales_record.quantity_sold,
method="FIFO")
# Check if stock level is now low (after successful decrease)
await self._check_low_stock_threshold(
sales_record.tenant_id,
sales_record.inventory_product_id,
sales_record.product_name,
result
)
else:
logger.warning("Failed to decrease inventory for sale (no result)",
sales_record_id=sales_record.id)
return result
except ValueError as e:
# Insufficient stock - log warning but don't fail the sale
logger.warning("Insufficient stock for sale",
sales_record_id=sales_record.id,
error=str(e),
product_id=sales_record.inventory_product_id,
quantity_requested=sales_record.quantity_sold)
# Trigger low stock alert
await self._trigger_low_stock_alert(
sales_record.tenant_id,
sales_record.inventory_product_id,
sales_record.product_name,
error_message=str(e)
)
return None
except Exception as e:
# Other errors - log but don't fail the sale
logger.error("Failed to decrease inventory for sale",
sales_record_id=sales_record.id,
error=str(e),
product_id=sales_record.inventory_product_id)
return None
async def _check_low_stock_threshold(
self,
tenant_id: UUID,
product_id: UUID,
product_name: str,
consume_result: Dict[str, Any]
):
"""Check if stock level is below threshold after decrease"""
try:
# Get product details to check current stock and reorder point
product = await self.inventory_client.get_product_by_id(product_id, tenant_id)
if not product:
return
# Check if product has reorder point configured
reorder_point = product.get("reorder_point", 0)
current_stock = product.get("current_stock", 0)
# Trigger alert if stock is below reorder point
if reorder_point > 0 and current_stock <= reorder_point:
logger.warning("Stock below reorder point",
product_id=product_id,
product_name=product_name,
current_stock=current_stock,
reorder_point=reorder_point,
tenant_id=tenant_id)
await self._trigger_low_stock_alert(
tenant_id,
product_id,
product_name,
current_stock=current_stock,
reorder_point=reorder_point
)
except Exception as e:
# Don't fail the operation if alert fails
logger.error("Failed to check low stock threshold",
error=str(e),
product_id=product_id)
async def _trigger_low_stock_alert(
self,
tenant_id: UUID,
product_id: UUID,
product_name: str,
error_message: Optional[str] = None,
current_stock: Optional[float] = None,
reorder_point: Optional[float] = None
):
"""Trigger low stock alert notification"""
try:
# For now, just log the alert
# In production, this could:
# - Send email notification
# - Create in-app notification
# - Trigger webhook
# - Create alert record in database
# - Send to external alerting system (PagerDuty, Slack, etc.)
alert_data = {
"type": "low_stock",
"severity": "warning" if current_stock is not None else "critical",
"tenant_id": str(tenant_id),
"product_id": str(product_id),
"product_name": product_name,
"current_stock": current_stock,
"reorder_point": reorder_point,
"error_message": error_message,
"timestamp": datetime.utcnow().isoformat()
}
logger.warning("LOW_STOCK_ALERT",
**alert_data)
# Implement notification delivery via RabbitMQ event
try:
from shared.messaging import get_rabbitmq_client
rabbitmq_client = get_rabbitmq_client()
if rabbitmq_client:
# Publish low stock event for notification service to consume
event_payload = {
"event_id": str(uuid.uuid4()),
"event_type": "inventory.low_stock",
"timestamp": datetime.utcnow().isoformat(),
"tenant_id": str(tenant_id),
"data": alert_data
}
await rabbitmq_client.publish_event(
exchange_name="inventory.events",
routing_key="inventory.low_stock",
event_data=event_payload
)
logger.info("Published low stock alert event",
tenant_id=str(tenant_id),
product_id=product_id,
event_id=event_payload["event_id"])
else:
logger.warning("RabbitMQ client not available, notification not sent")
except Exception as notify_error:
logger.error("Failed to publish low stock notification event",
error=str(notify_error),
tenant_id=str(tenant_id))
# Don't fail the main operation if notification fails
except Exception as e:
logger.error("Failed to trigger low stock alert",
error=str(e),
product_id=product_id)
# New inventory integration methods
async def search_inventory_products(self, search_term: str, tenant_id: UUID,
product_type: Optional[str] = None) -> List[Dict[str, Any]]:
"""Search products in inventory service"""
try:
products = await self.inventory_client.search_products(search_term, tenant_id, product_type)
logger.info("Searched inventory products", search_term=search_term,
count=len(products), tenant_id=tenant_id)
return products
except Exception as e:
logger.error("Failed to search inventory products",
error=str(e), search_term=search_term, tenant_id=tenant_id)
return []
async def get_inventory_product(self, product_id: UUID, tenant_id: UUID) -> Optional[Dict[str, Any]]:
"""Get product details from inventory service"""
try:
product = await self.inventory_client.get_product_by_id(product_id, tenant_id)
if product:
logger.info("Retrieved inventory product", product_id=product_id, tenant_id=tenant_id)
return product
except Exception as e:
logger.error("Failed to get inventory product",
error=str(e), product_id=product_id, tenant_id=tenant_id)
return None
async def get_inventory_products_by_category(self, category: str, tenant_id: UUID,
product_type: Optional[str] = None) -> List[Dict[str, Any]]:
"""Get products by category from inventory service"""
try:
products = await self.inventory_client.get_products_by_category(category, tenant_id, product_type)
logger.info("Retrieved inventory products by category", category=category,
count=len(products), tenant_id=tenant_id)
return products
except Exception as e:
logger.error("Failed to get inventory products by category",
error=str(e), category=category, tenant_id=tenant_id)
return []
async def analyze_product_demand_patterns(
self,
tenant_id: UUID,
inventory_product_id: UUID,
start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None,
min_history_days: int = 90
) -> Dict[str, Any]:
"""
Analyze demand patterns for a specific product from historical sales data.
This method provides insights on:
- Demand trends (increasing/decreasing)
- Volatility (coefficient of variation)
- Weekly seasonal patterns
- Peak/low demand days
Args:
tenant_id: Tenant identifier
inventory_product_id: Product identifier
start_date: Start date for analysis (optional)
end_date: End date for analysis (optional)
min_history_days: Minimum days of history required
Returns:
Analysis results with patterns, trends, and statistics
"""
try:
import pandas as pd
logger.info(
"Analyzing product demand patterns",
tenant_id=tenant_id,
inventory_product_id=inventory_product_id
)
# Fetch sales data for the product
sales_records = await self.get_product_sales(
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
start_date=start_date,
end_date=end_date
)
if not sales_records or len(sales_records) < min_history_days:
return {
'analyzed_at': datetime.utcnow().isoformat(),
'history_days': len(sales_records) if sales_records else 0,
'patterns': {},
'trend_analysis': {},
'seasonal_factors': {},
'statistics': {},
'error': f'Insufficient historical data (need {min_history_days} days, got {len(sales_records) if sales_records else 0})'
}
# Convert to DataFrame for analysis
sales_data = pd.DataFrame([{
'date': record.date,
'quantity': record.quantity_sold,
'revenue': float(record.revenue) if record.revenue else 0
} for record in sales_records])
sales_data['date'] = pd.to_datetime(sales_data['date'])
sales_data = sales_data.sort_values('date')
# Calculate basic statistics
mean_demand = sales_data['quantity'].mean()
std_demand = sales_data['quantity'].std()
cv = (std_demand / mean_demand) if mean_demand > 0 else 0
# Trend analysis
sales_data['days_since_start'] = (sales_data['date'] - sales_data['date'].min()).dt.days
trend_correlation = sales_data['days_since_start'].corr(sales_data['quantity'])
is_increasing = trend_correlation > 0.2
is_decreasing = trend_correlation < -0.2
# Seasonal pattern detection (day of week)
sales_data['day_of_week'] = sales_data['date'].dt.dayofweek
weekly_pattern = sales_data.groupby('day_of_week')['quantity'].mean().to_dict()
peak_day = max(weekly_pattern, key=weekly_pattern.get)
low_day = min(weekly_pattern, key=weekly_pattern.get)
peak_ratio = weekly_pattern[peak_day] / weekly_pattern[low_day] if weekly_pattern[low_day] > 0 else 1.0
logger.info(
"Demand pattern analysis complete",
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
data_points=len(sales_data),
trend_direction='increasing' if is_increasing else 'decreasing' if is_decreasing else 'stable'
)
return {
'analyzed_at': datetime.utcnow().isoformat(),
'history_days': len(sales_data),
'date_range': {
'start': sales_data['date'].min().isoformat(),
'end': sales_data['date'].max().isoformat()
},
'statistics': {
'mean_demand': round(mean_demand, 2),
'std_demand': round(std_demand, 2),
'coefficient_of_variation': round(cv, 3),
'total_quantity': round(sales_data['quantity'].sum(), 2),
'total_revenue': round(sales_data['revenue'].sum(), 2),
'min_demand': round(sales_data['quantity'].min(), 2),
'max_demand': round(sales_data['quantity'].max(), 2)
},
'trend_analysis': {
'correlation': round(trend_correlation, 3),
'is_increasing': is_increasing,
'is_decreasing': is_decreasing,
'direction': 'increasing' if is_increasing else 'decreasing' if is_decreasing else 'stable'
},
'patterns': {
'weekly_pattern': {str(k): round(v, 2) for k, v in weekly_pattern.items()},
'peak_day': int(peak_day),
'low_day': int(low_day)
},
'seasonal_factors': {
'peak_ratio': round(peak_ratio, 2),
'has_strong_pattern': peak_ratio > 1.5
}
}
except Exception as e:
logger.error(
"Error analyzing product demand patterns",
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
error=str(e),
exc_info=True
)
return {
'analyzed_at': datetime.utcnow().isoformat(),
'history_days': 0,
'patterns': {},
'trend_analysis': {},
'seasonal_factors': {},
'statistics': {},
'error': str(e)
}