Files
bakery-ia/services/training/app/services/data_client.py
2025-10-15 21:09:42 +02:00

413 lines
16 KiB
Python

# services/training/app/services/data_client.py
"""
Training Service Data Client
Migrated to use shared service clients with timeout configuration
"""
import structlog
from typing import Dict, Any, List, Optional
from datetime import datetime
import httpx
# Import the shared clients
from shared.clients import get_sales_client, get_external_client, get_service_clients
from app.core.config import settings
from app.core import constants as const
from app.utils.circuit_breaker import circuit_breaker_registry, CircuitBreakerError
from app.utils.retry import with_retry, HTTP_RETRY_STRATEGY, EXTERNAL_SERVICE_RETRY_STRATEGY
logger = structlog.get_logger()
class DataClient:
"""
Data client for training service
Now uses the shared data service client under the hood
"""
def __init__(self):
# Get the new specialized clients with timeout configuration
self.sales_client = get_sales_client(settings, "training")
self.external_client = get_external_client(settings, "training")
# Configure timeouts for HTTP clients
self._configure_timeouts()
# Initialize circuit breakers for external services
self._init_circuit_breakers()
# Check if the new method is available for stored traffic data
if hasattr(self.external_client, 'get_stored_traffic_data_for_training'):
self.supports_stored_traffic_data = True
def _configure_timeouts(self):
"""Configure appropriate timeouts for HTTP clients"""
timeout = httpx.Timeout(
connect=const.HTTP_TIMEOUT_DEFAULT,
read=const.HTTP_TIMEOUT_LONG_RUNNING,
write=const.HTTP_TIMEOUT_DEFAULT,
pool=const.HTTP_TIMEOUT_DEFAULT
)
# Apply timeout to clients if they have httpx clients
if hasattr(self.sales_client, 'client') and isinstance(self.sales_client.client, httpx.AsyncClient):
self.sales_client.client.timeout = timeout
if hasattr(self.external_client, 'client') and isinstance(self.external_client.client, httpx.AsyncClient):
self.external_client.client.timeout = timeout
else:
self.supports_stored_traffic_data = False
logger.warning("Stored traffic data method not available in external client")
def _init_circuit_breakers(self):
"""Initialize circuit breakers for external service calls"""
# Sales service circuit breaker
self.sales_cb = circuit_breaker_registry.get_or_create(
name="sales_service",
failure_threshold=5,
recovery_timeout=60.0,
expected_exception=Exception
)
# Weather service circuit breaker
self.weather_cb = circuit_breaker_registry.get_or_create(
name="weather_service",
failure_threshold=3, # Weather is optional, fail faster
recovery_timeout=30.0,
expected_exception=Exception
)
# Traffic service circuit breaker
self.traffic_cb = circuit_breaker_registry.get_or_create(
name="traffic_service",
failure_threshold=3, # Traffic is optional, fail faster
recovery_timeout=30.0,
expected_exception=Exception
)
@with_retry(max_attempts=3, initial_delay=1.0, max_delay=10.0)
async def _fetch_sales_data_internal(
self,
tenant_id: str,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
product_id: Optional[str] = None,
fetch_all: bool = True
) -> List[Dict[str, Any]]:
"""Internal method to fetch sales data with automatic retry"""
if fetch_all:
sales_data = await self.sales_client.get_all_sales_data(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
product_id=product_id,
aggregation="daily",
page_size=1000,
max_pages=100
)
else:
sales_data = await self.sales_client.get_sales_data(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
product_id=product_id,
aggregation="daily"
)
sales_data = sales_data or []
if sales_data:
logger.info(f"Fetched {len(sales_data)} sales records",
tenant_id=tenant_id, product_id=product_id, fetch_all=fetch_all)
return sales_data
else:
logger.error("No sales data returned", tenant_id=tenant_id)
raise ValueError(f"No sales data available for tenant {tenant_id}")
async def fetch_sales_data(
self,
tenant_id: str,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
product_id: Optional[str] = None,
fetch_all: bool = True
) -> List[Dict[str, Any]]:
"""
Fetch sales data for training with circuit breaker protection
"""
try:
return await self.sales_cb.call(
self._fetch_sales_data_internal,
tenant_id, start_date, end_date, product_id, fetch_all
)
except CircuitBreakerError as exc:
logger.error("Sales service circuit breaker open", error_message=str(exc))
raise RuntimeError(f"Sales service unavailable: {str(exc)}")
except ValueError:
raise
except Exception as exc:
logger.error("Error fetching sales data", tenant_id=tenant_id, error_message=str(exc))
raise RuntimeError(f"Failed to fetch sales data: {str(exc)}")
async def fetch_weather_data(
self,
tenant_id: str,
start_date: str,
end_date: str,
latitude: Optional[float] = None,
longitude: Optional[float] = None
) -> List[Dict[str, Any]]:
"""
Fetch weather data for training
All the error handling and retry logic is now in the base client!
"""
try:
weather_data = await self.external_client.get_weather_historical(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude
)
if weather_data:
logger.info(f"Fetched {len(weather_data)} weather records",
tenant_id=tenant_id)
return weather_data
else:
logger.warning("No weather data returned, will use synthetic data", tenant_id=tenant_id)
return []
except Exception as exc:
logger.warning("Error fetching weather data, will use synthetic data", tenant_id=tenant_id, error_message=str(exc))
return []
async def fetch_traffic_data_unified(
self,
tenant_id: str,
start_date: str,
end_date: str,
latitude: Optional[float] = None,
longitude: Optional[float] = None,
force_refresh: bool = False
) -> List[Dict[str, Any]]:
"""
Unified traffic data fetching with intelligent cache-first strategy
Strategy:
1. Check if stored/cached traffic data exists for the date range
2. If exists and not force_refresh, return cached data
3. If not exists or force_refresh, fetch fresh data
4. Always return data without duplicate fetching
Args:
tenant_id: Tenant identifier
start_date: Start date string (ISO format)
end_date: End date string (ISO format)
latitude: Optional latitude for location-based data
longitude: Optional longitude for location-based data
force_refresh: If True, bypass cache and fetch fresh data
"""
cache_key = f"{tenant_id}_{start_date}_{end_date}_{latitude}_{longitude}"
try:
# Step 1: Try to get stored/cached data first (unless force_refresh)
if not force_refresh and self.supports_stored_traffic_data:
logger.info("Attempting to fetch cached traffic data",
tenant_id=tenant_id, cache_key=cache_key)
try:
cached_data = await self.external_client.get_stored_traffic_data_for_training(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude
)
if cached_data and len(cached_data) > 0:
logger.info(f"✅ Using cached traffic data: {len(cached_data)} records",
tenant_id=tenant_id)
return cached_data
else:
logger.info("No cached traffic data found, fetching fresh data",
tenant_id=tenant_id)
except Exception as cache_error:
logger.warning(f"Cache fetch failed, falling back to fresh data: {cache_error}",
tenant_id=tenant_id)
# Step 2: Fetch fresh data if no cache or force_refresh
logger.info("Fetching fresh traffic data" + (" (force refresh)" if force_refresh else ""),
tenant_id=tenant_id)
fresh_data = await self.external_client.get_traffic_data(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude
)
if fresh_data and len(fresh_data) > 0:
logger.info(f"✅ Fetched fresh traffic data: {len(fresh_data)} records",
tenant_id=tenant_id)
return fresh_data
else:
logger.warning("No fresh traffic data available", tenant_id=tenant_id)
return []
except Exception as exc:
logger.error("Error in unified traffic data fetch",
tenant_id=tenant_id, cache_key=cache_key, error_message=str(exc))
return []
# Legacy methods for backward compatibility - now delegate to unified method
async def fetch_traffic_data(
self,
tenant_id: str,
start_date: str,
end_date: str,
latitude: Optional[float] = None,
longitude: Optional[float] = None
) -> List[Dict[str, Any]]:
"""Legacy method - delegates to unified fetcher with cache-first strategy"""
logger.info("Legacy fetch_traffic_data called - delegating to unified method", tenant_id=tenant_id)
return await self.fetch_traffic_data_unified(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude,
force_refresh=False # Use cache-first for legacy calls
)
async def fetch_stored_traffic_data_for_training(
self,
tenant_id: str,
start_date: str,
end_date: str,
latitude: Optional[float] = None,
longitude: Optional[float] = None
) -> List[Dict[str, Any]]:
"""Legacy method - delegates to unified fetcher with cache-first strategy"""
logger.info("Legacy fetch_stored_traffic_data_for_training called - delegating to unified method", tenant_id=tenant_id)
return await self.fetch_traffic_data_unified(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude,
force_refresh=False # Use cache-first for training calls
)
async def refresh_traffic_data(
self,
tenant_id: str,
start_date: str,
end_date: str,
latitude: Optional[float] = None,
longitude: Optional[float] = None
) -> List[Dict[str, Any]]:
"""Convenience method to force refresh traffic data"""
logger.info("Force refreshing traffic data (bypassing cache)", tenant_id=tenant_id)
return await self.fetch_traffic_data_unified(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
latitude=latitude,
longitude=longitude,
force_refresh=True # Force fresh data
)
async def validate_data_quality(
self,
tenant_id: str,
start_date: str,
end_date: str,
sales_data: List[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Validate data quality before training with comprehensive checks
"""
try:
errors = []
warnings = []
# If sales data provided, validate it directly
if sales_data is not None:
if not sales_data or len(sales_data) == 0:
errors.append("No sales data available for the specified period")
return {"is_valid": False, "errors": errors, "warnings": warnings}
# Check minimum data points
if len(sales_data) < 30:
errors.append(f"Insufficient data points: {len(sales_data)} (minimum 30 required)")
elif len(sales_data) < 90:
warnings.append(f"Limited data points: {len(sales_data)} (recommended 90+)")
# Check for required fields
required_fields = ['date', 'inventory_product_id']
for record in sales_data[:5]: # Sample check
missing = [f for f in required_fields if f not in record or record[f] is None]
if missing:
errors.append(f"Missing required fields: {missing}")
break
# Check for data quality issues
zero_count = sum(1 for r in sales_data if r.get('quantity', 0) == 0)
zero_ratio = zero_count / len(sales_data)
if zero_ratio > 0.9:
errors.append(f"Too many zero values: {zero_ratio:.1%} of records")
elif zero_ratio > 0.7:
warnings.append(f"High zero value ratio: {zero_ratio:.1%}")
# Check product diversity
unique_products = set(r.get('inventory_product_id') for r in sales_data if r.get('inventory_product_id'))
if len(unique_products) == 0:
errors.append("No valid product IDs found in sales data")
elif len(unique_products) == 1:
warnings.append("Only one product found - consider adding more products")
else:
# Fetch data for validation
sales_data = await self.fetch_sales_data(
tenant_id=tenant_id,
start_date=start_date,
end_date=end_date,
fetch_all=False
)
if not sales_data:
errors.append("Unable to fetch sales data for validation")
return {"is_valid": False, "errors": errors, "warnings": warnings}
# Recursive call with fetched data
return await self.validate_data_quality(
tenant_id, start_date, end_date, sales_data
)
is_valid = len(errors) == 0
result = {
"is_valid": is_valid,
"errors": errors,
"warnings": warnings,
"data_points": len(sales_data) if sales_data else 0,
"unique_products": len(unique_products) if sales_data else 0
}
if is_valid:
logger.info("Data validation passed",
tenant_id=tenant_id,
data_points=result["data_points"],
warnings_count=len(warnings))
else:
logger.error("Data validation failed",
tenant_id=tenant_id,
errors=errors)
return result
except Exception as exc:
logger.error("Error validating data", tenant_id=tenant_id, error_message=str(exc))
raise ValueError(f"Data validation failed: {str(exc)}")
# Global instance - same as before, but much simpler implementation
data_client = DataClient()