Files
bakery-ia/tests/test_recommendation_alert.py
Urtzi Alfaro d1c83dce74 Clean code
2025-09-29 19:18:45 +02:00

95 lines
3.5 KiB
Python

#!/usr/bin/env python3
"""
Recommendation Alert Test
Sends a realistic optimization recommendation to test the AI recommendations system
"""
import aio_pika
import asyncio
import json
import uuid
from datetime import datetime
async def send_recommendation_alert():
"""Send a realistic optimization recommendation"""
# Connect to RabbitMQ
connection = await aio_pika.connect_robust('amqp://bakery:forecast123@rabbitmq:5672/')
channel = await connection.channel()
# Declare the alerts exchange
exchange = await channel.declare_exchange(
'alerts.exchange',
aio_pika.ExchangeType.TOPIC,
durable=True
)
# Use actual tenant ID
tenant_id = 'c464fb3e-7af2-46e6-9e43-85318f34199a'
print("💡 Sending optimization recommendation...")
# Optimization Recommendation
recommendation = {
'id': str(uuid.uuid4()),
'tenant_id': tenant_id,
'item_type': 'recommendation',
'type': 'demand_optimization',
'severity': 'medium',
'service': 'ai-forecast-service',
'title': '💡 OPTIMIZACIÓN: Ajustar Producción de Croissants',
'message': 'Nuestro análisis de IA detectó que la demanda de croissants aumenta un 35% los viernes. Se recomienda incrementar la producción para maximizar ventas y reducir desperdicio.',
'actions': [
'Revisar análisis de demanda detallado',
'Ajustar plan de producción para viernes',
'Evaluar capacidad de horno disponible',
'Calcular ROI del incremento propuesto',
'Implementar cambio gradualmente',
'Monitorear resultados por 2 semanas'
],
'metadata': {
'product_name': 'Croissants',
'current_friday_production': 120,
'recommended_friday_production': 162,
'increase_percentage': 35,
'confidence_score': 0.87,
'data_period_analyzed': '3 meses',
'potential_revenue_increase': 280.50,
'currency': 'EUR',
'historical_sellout_rate': 0.95,
'waste_reduction_potential': '15%',
'implementation_effort': 'LOW',
'roi_timeframe': '2 semanas',
'seasonal_factors': [
'Viernes laboral',
'Proximidad fin de semana',
'Horario de desayuno extendido'
],
'risk_level': 'BAJO'
},
'timestamp': datetime.utcnow().isoformat()
}
await exchange.publish(
aio_pika.Message(json.dumps(recommendation).encode()),
routing_key='recommendation.medium.ai-forecast-service'
)
print(f"✅ Recommendation sent: {recommendation['title']}")
print(f" Recommendation ID: {recommendation['id']}")
print(f" Severity: {recommendation['severity'].upper()}")
print(f" Service: {recommendation['service']}")
print(f" Confidence: {recommendation['metadata']['confidence_score']*100:.0f}%")
print(f" Potential revenue increase: €{recommendation['metadata']['potential_revenue_increase']}")
await connection.close()
print("\n🎯 Recommendation test completed!")
print("Check your frontend for:")
print(" • Medium priority notification in header")
print(" • Real-time recommendation in dashboard panel")
print(" • Blue info badge (recommendation type)")
print(" • Expandable card with AI analysis and business impact")
if __name__ == "__main__":
asyncio.run(send_recommendation_alert())