Files
bakery-ia/services/production/app/repositories/base.py
2025-11-05 13:34:56 +01:00

217 lines
7.6 KiB
Python

"""
Base Repository for Production Service
Service-specific repository base class with production utilities
"""
from typing import Optional, List, Dict, Any, Type
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import text, and_, or_
from datetime import datetime, date, timedelta
import structlog
from shared.database.repository import BaseRepository
from shared.database.exceptions import DatabaseError
logger = structlog.get_logger()
class ProductionBaseRepository(BaseRepository):
"""Base repository for production service with common production operations"""
def __init__(self, model: Type, session: AsyncSession, cache_ttl: Optional[int] = 300):
# Production data is more dynamic, shorter cache time (5 minutes)
super().__init__(model, session, cache_ttl)
async def get_by_tenant_id(self, tenant_id: str, skip: int = 0, limit: int = 100) -> List:
"""Get records by tenant ID"""
if hasattr(self.model, 'tenant_id'):
return await self.get_multi(
skip=skip,
limit=limit,
filters={"tenant_id": tenant_id},
order_by="created_at",
order_desc=True
)
return await self.get_multi(skip=skip, limit=limit)
async def get_by_status(
self,
tenant_id: str,
status: str,
skip: int = 0,
limit: int = 100
) -> List:
"""Get records by tenant and status"""
if hasattr(self.model, 'status'):
return await self.get_multi(
skip=skip,
limit=limit,
filters={
"tenant_id": tenant_id,
"status": status
},
order_by="created_at",
order_desc=True
)
return await self.get_by_tenant_id(tenant_id, skip, limit)
async def get_by_date_range(
self,
tenant_id: str,
start_date: date,
end_date: date,
date_field: str = "created_at",
skip: int = 0,
limit: int = 100
) -> List:
"""Get records by tenant and date range"""
try:
start_datetime = datetime.combine(start_date, datetime.min.time())
end_datetime = datetime.combine(end_date, datetime.max.time())
filters = {
"tenant_id": tenant_id,
f"{date_field}__gte": start_datetime,
f"{date_field}__lte": end_datetime
}
return await self.get_multi(
skip=skip,
limit=limit,
filters=filters,
order_by=date_field,
order_desc=True
)
except Exception as e:
logger.error("Error fetching records by date range",
error=str(e), tenant_id=tenant_id)
raise DatabaseError(f"Failed to fetch records by date range: {str(e)}")
async def get_active_records(
self,
tenant_id: str,
active_field: str = "is_active",
skip: int = 0,
limit: int = 100
) -> List:
"""Get active records for a tenant"""
if hasattr(self.model, active_field):
return await self.get_multi(
skip=skip,
limit=limit,
filters={
"tenant_id": tenant_id,
active_field: True
},
order_by="created_at",
order_desc=True
)
return await self.get_by_tenant_id(tenant_id, skip, limit)
def _validate_production_data(
self,
data: Dict[str, Any],
required_fields: List[str]
) -> Dict[str, Any]:
"""Validate production data with required fields"""
errors = []
# Check required fields
for field in required_fields:
if field not in data or data[field] is None:
errors.append(f"Missing required field: {field}")
# Validate tenant_id format
if "tenant_id" in data:
try:
import uuid
uuid.UUID(str(data["tenant_id"]))
except (ValueError, TypeError):
errors.append("Invalid tenant_id format")
# Validate datetime fields
datetime_fields = ["planned_start_time", "planned_end_time", "actual_start_time", "actual_end_time"]
for field in datetime_fields:
if field in data and data[field] is not None:
if not isinstance(data[field], (datetime, str)):
errors.append(f"Invalid datetime format for {field}")
# Validate numeric fields
numeric_fields = ["planned_quantity", "actual_quantity", "quality_score", "yield_percentage"]
for field in numeric_fields:
if field in data and data[field] is not None:
try:
float(data[field])
if data[field] < 0:
errors.append(f"{field} cannot be negative")
except (ValueError, TypeError):
errors.append(f"Invalid numeric value for {field}")
# Validate percentage fields (0-100)
percentage_fields = ["yield_percentage", "efficiency_percentage", "utilization_percentage"]
for field in percentage_fields:
if field in data and data[field] is not None:
try:
value = float(data[field])
if value < 0 or value > 100:
errors.append(f"{field} must be between 0 and 100")
except (ValueError, TypeError):
pass # Already caught by numeric validation
return {
"is_valid": len(errors) == 0,
"errors": errors
}
async def get_production_statistics(
self,
tenant_id: str,
start_date: date,
end_date: date
) -> Dict[str, Any]:
"""Get production statistics for a tenant and date range"""
try:
# Base query for the model
start_datetime = datetime.combine(start_date, datetime.min.time())
end_datetime = datetime.combine(end_date, datetime.max.time())
# This would need to be implemented per specific model
# For now, return basic count
records = await self.get_by_date_range(
tenant_id, start_date, end_date, limit=1000
)
return {
"total_records": len(records),
"period_start": start_date.isoformat(),
"period_end": end_date.isoformat(),
"tenant_id": tenant_id
}
except Exception as e:
logger.error("Error calculating production statistics",
error=str(e), tenant_id=tenant_id)
raise DatabaseError(f"Failed to calculate statistics: {str(e)}")
async def check_duplicate(
self,
tenant_id: str,
unique_fields: Dict[str, Any]
) -> bool:
"""Check if a record with the same unique fields exists"""
try:
filters = {"tenant_id": tenant_id}
filters.update(unique_fields)
existing = await self.get_multi(
filters=filters,
limit=1
)
return len(existing) > 0
except Exception as e:
logger.error("Error checking for duplicates",
error=str(e), tenant_id=tenant_id)
return False