Files
bakery-ia/services/training/app/ml/data_processor.py
2025-11-05 13:34:56 +01:00

1073 lines
48 KiB
Python

"""
Enhanced Data Processor for Training Service with Repository Pattern
Uses repository pattern for data access and dependency injection
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime, timedelta, timezone
import structlog
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from app.services.date_alignment_service import DateAlignmentService, DateRange, DataSourceType
from app.repositories import ModelRepository, TrainingLogRepository
from shared.database.base import create_database_manager
from shared.database.transactions import transactional
from shared.database.exceptions import DatabaseError
from app.core.config import settings
from app.ml.enhanced_features import AdvancedFeatureEngineer
import holidays
logger = structlog.get_logger()
class EnhancedBakeryDataProcessor:
"""
Enhanced data processor for bakery forecasting with repository pattern.
Integrates date alignment, data cleaning, feature engineering, and preparation for ML models.
"""
def __init__(self, database_manager=None, region: str = 'MD'):
self.database_manager = database_manager or create_database_manager(settings.DATABASE_URL, "training-service")
self.scalers = {} # Store scalers for each feature
self.imputers = {} # Store imputers for missing value handling
self.date_alignment_service = DateAlignmentService()
self.feature_engineer = AdvancedFeatureEngineer()
self.region = region # Region for holidays (MD=Madrid, PV=Basque, etc.)
self.spain_holidays = holidays.Spain(prov=region) # Initialize holidays library
def get_scalers(self) -> Dict[str, Any]:
"""Return the scalers/normalization parameters for use during prediction"""
return self.scalers.copy()
@staticmethod
def _extract_numeric_from_dict(value: Any) -> Optional[float]:
"""
Robust extraction of numeric values from complex data structures.
Handles various dict structures that might come from external APIs.
Args:
value: Any value that might be a dict, numeric, or other type
Returns:
Numeric value as float, or None if extraction fails
"""
# If already numeric, return it
if isinstance(value, (int, float)) and not isinstance(value, bool):
return float(value)
# If it's a dict, try multiple extraction strategies
if isinstance(value, dict):
# Strategy 1: Try common keys
for key in ['value', 'data', 'result', 'amount', 'count', 'number', 'val']:
if key in value:
extracted = value[key]
# Recursively extract if nested
if isinstance(extracted, dict):
return EnhancedBakeryDataProcessor._extract_numeric_from_dict(extracted)
elif isinstance(extracted, (int, float)) and not isinstance(extracted, bool):
return float(extracted)
# Strategy 2: Try to find first numeric value in dict
for v in value.values():
if isinstance(v, (int, float)) and not isinstance(v, bool):
return float(v)
elif isinstance(v, dict):
# Recursively try nested dicts
result = EnhancedBakeryDataProcessor._extract_numeric_from_dict(v)
if result is not None:
return result
# Strategy 3: Try to convert string to numeric
if isinstance(value, str):
try:
return float(value)
except (ValueError, TypeError):
pass
# If all strategies fail, return None (will be converted to NaN)
return None
async def _get_repositories(self, session):
"""Initialize repositories with session"""
return {
'model': ModelRepository(session),
'training_log': TrainingLogRepository(session)
}
def _ensure_timezone_aware(self, df: pd.DataFrame, date_column: str = 'date') -> pd.DataFrame:
"""Ensure date column is timezone-aware to prevent conversion errors"""
if date_column in df.columns:
# Convert to datetime if not already
df[date_column] = pd.to_datetime(df[date_column])
# If timezone-naive, localize to UTC
if df[date_column].dt.tz is None:
df[date_column] = df[date_column].dt.tz_localize('UTC')
# If already timezone-aware but not UTC, convert to UTC
elif str(df[date_column].dt.tz) != 'UTC':
df[date_column] = df[date_column].dt.tz_convert('UTC')
return df
async def prepare_training_data(self,
sales_data: pd.DataFrame,
weather_data: pd.DataFrame,
traffic_data: pd.DataFrame,
inventory_product_id: str,
tenant_id: str = None,
job_id: str = None,
session=None) -> pd.DataFrame:
"""
Prepare comprehensive training data for a specific product with repository logging.
Args:
sales_data: Historical sales data for the product
weather_data: Weather data
traffic_data: Traffic data
inventory_product_id: Inventory product UUID for logging
tenant_id: Optional tenant ID for tracking
job_id: Optional job ID for tracking
Returns:
DataFrame ready for Prophet training with 'ds' and 'y' columns plus features
"""
try:
logger.info("Preparing enhanced training data using repository pattern",
inventory_product_id=inventory_product_id,
tenant_id=tenant_id,
job_id=job_id)
# Get database session and repositories
async with self.database_manager.get_session() as db_session:
repos = await self._get_repositories(db_session)
# Log data preparation start if we have tracking info
if job_id and tenant_id:
await repos['training_log'].update_log_progress(
job_id, 15, f"preparing_data_{inventory_product_id}", "running"
)
# Step 1: Convert and validate sales data
sales_clean = await self._process_sales_data(sales_data, inventory_product_id)
# FIX: Ensure timezone awareness before any operations
sales_clean = self._ensure_timezone_aware(sales_clean)
weather_data = self._ensure_timezone_aware(weather_data) if not weather_data.empty else weather_data
traffic_data = self._ensure_timezone_aware(traffic_data) if not traffic_data.empty else traffic_data
# Step 2: Apply date alignment if we have date constraints
sales_clean = await self._apply_date_alignment(sales_clean, weather_data, traffic_data)
# Step 3: Aggregate to daily level
daily_sales = await self._aggregate_daily_sales(sales_clean)
# Step 4: Add temporal features
daily_sales = self._add_temporal_features(daily_sales)
# Step 5: Merge external data sources
daily_sales = self._merge_weather_features(daily_sales, weather_data)
daily_sales = self._merge_traffic_features(daily_sales, traffic_data)
# Step 6: Engineer basic features
daily_sales = self._engineer_features(daily_sales)
# Step 6b: Add advanced features (lagged, rolling, cyclical, interactions, trends)
daily_sales = self._add_advanced_features(daily_sales)
# Step 7: Handle missing values
daily_sales = self._handle_missing_values(daily_sales)
# Step 8: Prepare for Prophet (rename columns and validate)
prophet_data = self._prepare_prophet_format(daily_sales)
# Step 9: Store processing metadata if we have a tenant
if tenant_id:
await self._store_processing_metadata(
repos, tenant_id, inventory_product_id, prophet_data, job_id
)
logger.info("Enhanced training data prepared successfully",
inventory_product_id=inventory_product_id,
data_points=len(prophet_data))
return prophet_data
except Exception as e:
logger.error("Error preparing enhanced training data",
inventory_product_id=inventory_product_id,
error=str(e))
raise
async def _store_processing_metadata(self,
repos: Dict,
tenant_id: str,
inventory_product_id: str,
processed_data: pd.DataFrame,
job_id: str = None):
"""Store data processing metadata using repository"""
try:
# Create processing metadata
metadata = {
"inventory_product_id": inventory_product_id,
"data_points": len(processed_data),
"date_range": {
"start": processed_data['ds'].min().isoformat(),
"end": processed_data['ds'].max().isoformat()
},
"features_count": len([col for col in processed_data.columns if col not in ['ds', 'y']]),
"processed_at": datetime.now().isoformat()
}
# Log processing completion
if job_id:
await repos['training_log'].update_log_progress(
job_id, 25, f"data_prepared_{inventory_product_id}", "running"
)
except Exception as e:
logger.warning("Failed to store processing metadata",
error=str(e))
async def prepare_prediction_features(self,
future_dates: pd.DatetimeIndex,
weather_forecast: pd.DataFrame = None,
traffic_forecast: pd.DataFrame = None,
historical_data: pd.DataFrame = None) -> pd.DataFrame:
"""
Create features for future predictions with proper date handling.
Args:
future_dates: Future dates to predict
weather_forecast: Weather forecast data
traffic_forecast: Traffic forecast data
historical_data: Historical data for creating lagged and rolling features
Returns:
DataFrame with features for prediction
"""
try:
# Create base future dataframe
future_df = pd.DataFrame({'ds': future_dates})
# Add temporal features
future_df = self._add_temporal_features(
future_df.rename(columns={'ds': 'date'})
).rename(columns={'date': 'ds'})
# Add weather features
if weather_forecast is not None and not weather_forecast.empty:
weather_features = weather_forecast.copy()
if 'date' in weather_features.columns:
weather_features = weather_features.rename(columns={'date': 'ds'})
future_df = future_df.merge(weather_features, on='ds', how='left')
# Add traffic features
if traffic_forecast is not None and not traffic_forecast.empty:
traffic_features = traffic_forecast.copy()
if 'date' in traffic_features.columns:
traffic_features = traffic_features.rename(columns={'date': 'ds'})
future_df = future_df.merge(traffic_features, on='ds', how='left')
# Engineer basic features
future_df = self._engineer_features(future_df.rename(columns={'ds': 'date'}))
# Add advanced features if historical data is provided
if historical_data is not None and not historical_data.empty:
# Combine historical and future data to calculate lagged/rolling features
combined_df = pd.concat([
historical_data.rename(columns={'ds': 'date'}),
future_df
], ignore_index=True).sort_values('date')
# Apply advanced features to combined data
combined_df = self._add_advanced_features(combined_df)
# Extract only the future rows
future_df = combined_df[combined_df['date'].isin(future_df['date'])].copy()
else:
# Without historical data, add advanced features with NaN for lags
logger.warning("No historical data provided, lagged features will be NaN")
future_df = self._add_advanced_features(future_df)
future_df = future_df.rename(columns={'date': 'ds'})
# Handle missing values in future data
future_df = self._handle_missing_values_future(future_df)
return future_df
except Exception as e:
logger.error("Error creating prediction features", error=str(e))
# Return minimal features if error
return pd.DataFrame({'ds': future_dates})
async def _apply_date_alignment(self,
sales_data: pd.DataFrame,
weather_data: pd.DataFrame,
traffic_data: pd.DataFrame) -> pd.DataFrame:
"""
Apply date alignment constraints to ensure data consistency across sources.
"""
try:
if sales_data.empty:
return sales_data
# Create date range from sales data
sales_dates = pd.to_datetime(sales_data['date'])
sales_date_range = DateRange(
start=sales_dates.min(),
end=sales_dates.max(),
source=DataSourceType.BAKERY_SALES
)
# Get aligned date range considering all constraints
aligned_range = self.date_alignment_service.validate_and_align_dates(
user_sales_range=sales_date_range
)
# Filter sales data to aligned range
mask = (sales_dates >= aligned_range.start) & (sales_dates <= aligned_range.end)
filtered_sales = sales_data[mask].copy()
logger.info("Date alignment completed",
original_records=len(sales_data),
filtered_records=len(filtered_sales),
date_range=f"{aligned_range.start.date()} to {aligned_range.end.date()}")
if aligned_range.constraints:
logger.info("Applied constraints", constraints=aligned_range.constraints)
return filtered_sales
except Exception as e:
logger.warning("Date alignment failed, using original data", error=str(e))
return sales_data
async def _process_sales_data(self, sales_data: pd.DataFrame, inventory_product_id: str) -> pd.DataFrame:
"""Process and clean sales data with enhanced validation"""
sales_clean = sales_data.copy()
# Ensure date column exists and is datetime
if 'date' not in sales_clean.columns:
raise ValueError("Sales data must have a 'date' column")
sales_clean['date'] = pd.to_datetime(sales_clean['date'])
# Handle different quantity column names
quantity_columns = ['quantity', 'quantity_sold', 'sales', 'units_sold']
quantity_col = None
for col in quantity_columns:
if col in sales_clean.columns:
quantity_col = col
break
if quantity_col is None:
raise ValueError(f"Sales data must have one of these columns: {quantity_columns}")
# Standardize to 'quantity'
if quantity_col != 'quantity':
sales_clean['quantity'] = sales_clean[quantity_col]
logger.info("Mapped quantity column",
from_column=quantity_col,
to_column='quantity')
sales_clean['quantity'] = pd.to_numeric(sales_clean['quantity'], errors='coerce')
# Remove rows with invalid quantities
sales_clean = sales_clean.dropna(subset=['quantity'])
sales_clean = sales_clean[sales_clean['quantity'] >= 0] # No negative sales
# Filter for the specific product if inventory_product_id column exists
if 'inventory_product_id' in sales_clean.columns:
sales_clean = sales_clean[sales_clean['inventory_product_id'] == inventory_product_id]
# Remove duplicate dates (keep the one with highest quantity)
sales_clean = sales_clean.sort_values(['date', 'quantity'], ascending=[True, False])
sales_clean = sales_clean.drop_duplicates(subset=['date'], keep='first')
return sales_clean
async def _aggregate_daily_sales(self, sales_data: pd.DataFrame) -> pd.DataFrame:
"""Aggregate sales to daily level with improved date handling"""
if sales_data.empty:
return pd.DataFrame(columns=['date', 'quantity'])
# Group by date and sum quantities
daily_sales = sales_data.groupby('date').agg({
'quantity': 'sum'
}).reset_index()
# Ensure we have data for all dates in the range (fill gaps with 0)
date_range = pd.date_range(
start=daily_sales['date'].min(),
end=daily_sales['date'].max(),
freq='D'
)
full_date_df = pd.DataFrame({'date': date_range})
daily_sales = full_date_df.merge(daily_sales, on='date', how='left')
daily_sales['quantity'] = daily_sales['quantity'].fillna(0) # Fill missing days with 0 sales
return daily_sales
def _add_temporal_features(self, df: pd.DataFrame) -> pd.DataFrame:
"""Add comprehensive temporal features for bakery demand patterns"""
df = df.copy()
# Ensure we have a date column
if 'date' not in df.columns:
raise ValueError("DataFrame must have a 'date' column")
df['date'] = pd.to_datetime(df['date'])
# Basic temporal features
df['day_of_week'] = df['date'].dt.dayofweek # 0=Monday, 6=Sunday
df['day_of_month'] = df['date'].dt.day
df['month'] = df['date'].dt.month
df['quarter'] = df['date'].dt.quarter
df['week_of_year'] = df['date'].dt.isocalendar().week
# Bakery-specific features
df['is_weekend'] = df['day_of_week'].isin([5, 6]).astype(int)
df['is_monday'] = (df['day_of_week'] == 0).astype(int) # Monday often has different patterns
df['is_friday'] = (df['day_of_week'] == 4).astype(int) # Friday often busy
# Season mapping for Madrid
df['season'] = df['month'].apply(self._get_season)
df['is_summer'] = (df['season'] == 3).astype(int) # Summer seasonality
df['is_winter'] = (df['season'] == 1).astype(int) # Winter seasonality
# Holiday and special day indicators
df['is_holiday'] = df['date'].apply(self._is_spanish_holiday).astype(int)
df['is_school_holiday'] = df['date'].apply(self._is_school_holiday).astype(int)
df['is_month_start'] = (df['day_of_month'] <= 3).astype(int)
df['is_month_end'] = (df['day_of_month'] >= 28).astype(int)
# Payday patterns (common in Spain: end/beginning of month)
df['is_payday_period'] = ((df['day_of_month'] <= 5) | (df['day_of_month'] >= 25)).astype(int)
return df
def _merge_weather_features(self,
daily_sales: pd.DataFrame,
weather_data: pd.DataFrame) -> pd.DataFrame:
"""Merge weather features with enhanced Madrid-specific handling"""
# Define weather_defaults OUTSIDE try block to fix scope error
weather_defaults = {
'temperature': 15.0,
'precipitation': 0.0,
'humidity': 60.0,
'wind_speed': 5.0,
'pressure': 1013.0
}
if weather_data.empty:
# Add default weather columns
for feature, default_value in weather_defaults.items():
daily_sales[feature] = default_value
return daily_sales
try:
weather_clean = weather_data.copy()
# Standardize date column
if 'date' not in weather_clean.columns and 'ds' in weather_clean.columns:
weather_clean = weather_clean.rename(columns={'ds': 'date'})
# CRITICAL FIX: Ensure both DataFrames have compatible datetime formats
weather_clean['date'] = pd.to_datetime(weather_clean['date'])
daily_sales['date'] = pd.to_datetime(daily_sales['date'])
# NEW FIX: Normalize both to timezone-naive datetime for merge compatibility
if weather_clean['date'].dt.tz is not None:
weather_clean['date'] = weather_clean['date'].dt.tz_convert('UTC').dt.tz_localize(None)
if daily_sales['date'].dt.tz is not None:
daily_sales['date'] = daily_sales['date'].dt.tz_convert('UTC').dt.tz_localize(None)
# Map weather columns to standard names
weather_mapping = {
'temperature': ['temperature', 'temp', 'temperatura'],
'precipitation': ['precipitation', 'precip', 'rain', 'lluvia'],
'humidity': ['humidity', 'humedad', 'relative_humidity'],
'wind_speed': ['wind_speed', 'viento', 'wind'],
'pressure': ['pressure', 'presion', 'atmospheric_pressure']
}
weather_features = ['date']
for standard_name, possible_names in weather_mapping.items():
for possible_name in possible_names:
if possible_name in weather_clean.columns:
# Extract numeric values using robust helper function
try:
# Check if column contains dict-like objects
has_dicts = weather_clean[possible_name].apply(lambda x: isinstance(x, dict)).any()
if has_dicts:
logger.warning(f"Weather column {possible_name} contains dict objects, extracting numeric values")
# Use robust extraction for all values
weather_clean[standard_name] = weather_clean[possible_name].apply(
self._extract_numeric_from_dict
)
else:
# Direct numeric conversion for simple values
weather_clean[standard_name] = pd.to_numeric(weather_clean[possible_name], errors='coerce')
except Exception as e:
logger.warning(f"Error converting weather column {possible_name}: {e}")
# Fallback: try to extract from each value
weather_clean[standard_name] = weather_clean[possible_name].apply(
self._extract_numeric_from_dict
)
weather_features.append(standard_name)
break
# Keep only the features we found
weather_clean = weather_clean[weather_features].copy()
# Merge with sales data
merged = daily_sales.merge(weather_clean, on='date', how='left')
# Fill missing weather values with Madrid-appropriate defaults
for feature, default_value in weather_defaults.items():
if feature in merged.columns:
# Ensure the column is numeric before filling
merged[feature] = pd.to_numeric(merged[feature], errors='coerce')
merged[feature] = merged[feature].fillna(default_value)
return merged
except Exception as e:
logger.warning("Error merging weather data", error=str(e))
# Add default weather columns if merge fails
for feature, default_value in weather_defaults.items():
daily_sales[feature] = default_value
return daily_sales
def _merge_traffic_features(self,
daily_sales: pd.DataFrame,
traffic_data: pd.DataFrame) -> pd.DataFrame:
"""Merge traffic features with enhanced Madrid-specific handling"""
if traffic_data.empty:
# Add default traffic column
daily_sales['traffic_volume'] = 100.0 # Neutral traffic level
return daily_sales
try:
traffic_clean = traffic_data.copy()
# Standardize date column
if 'date' not in traffic_clean.columns and 'ds' in traffic_clean.columns:
traffic_clean = traffic_clean.rename(columns={'ds': 'date'})
# CRITICAL FIX: Ensure both DataFrames have compatible datetime formats
traffic_clean['date'] = pd.to_datetime(traffic_clean['date'])
daily_sales['date'] = pd.to_datetime(daily_sales['date'])
# NEW FIX: Normalize both to timezone-naive datetime for merge compatibility
if traffic_clean['date'].dt.tz is not None:
traffic_clean['date'] = traffic_clean['date'].dt.tz_convert('UTC').dt.tz_localize(None)
if daily_sales['date'].dt.tz is not None:
daily_sales['date'] = daily_sales['date'].dt.tz_convert('UTC').dt.tz_localize(None)
# Map traffic columns to standard names
traffic_mapping = {
'traffic_volume': ['traffic_volume', 'traffic_intensity', 'trafico', 'intensidad', 'volume'],
'pedestrian_count': ['pedestrian_count', 'peatones', 'pedestrians'],
'congestion_level': ['congestion_level', 'congestion', 'nivel_congestion'],
'average_speed': ['average_speed', 'speed', 'velocidad_media', 'avg_speed']
}
traffic_features = ['date']
for standard_name, possible_names in traffic_mapping.items():
for possible_name in possible_names:
if possible_name in traffic_clean.columns:
# Extract numeric values using robust helper function
try:
# Check if column contains dict-like objects
has_dicts = traffic_clean[possible_name].apply(lambda x: isinstance(x, dict)).any()
if has_dicts:
logger.warning(f"Traffic column {possible_name} contains dict objects, extracting numeric values")
# Use robust extraction for all values
traffic_clean[standard_name] = traffic_clean[possible_name].apply(
self._extract_numeric_from_dict
)
else:
# Direct numeric conversion for simple values
traffic_clean[standard_name] = pd.to_numeric(traffic_clean[possible_name], errors='coerce')
except Exception as e:
logger.warning(f"Error converting traffic column {possible_name}: {e}")
# Fallback: try to extract from each value
traffic_clean[standard_name] = traffic_clean[possible_name].apply(
self._extract_numeric_from_dict
)
traffic_features.append(standard_name)
break
# Keep only the features we found
traffic_clean = traffic_clean[traffic_features].copy()
# Merge with sales data
merged = daily_sales.merge(traffic_clean, on='date', how='left')
# Fill missing traffic values with reasonable defaults
traffic_defaults = {
'traffic_volume': 100.0,
'pedestrian_count': 50.0,
'congestion_level': 1.0, # Low congestion
'average_speed': 30.0 # km/h typical for Madrid
}
for feature, default_value in traffic_defaults.items():
if feature in merged.columns:
# Ensure the column is numeric before filling
merged[feature] = pd.to_numeric(merged[feature], errors='coerce')
merged[feature] = merged[feature].fillna(default_value)
return merged
except Exception as e:
logger.warning("Error merging traffic data", error=str(e))
# Add default traffic column if merge fails
daily_sales['traffic_volume'] = 100.0
return daily_sales
def _engineer_features(self, df: pd.DataFrame) -> pd.DataFrame:
"""Engineer additional features from existing data with bakery-specific insights"""
df = df.copy()
# Weather-based features
if 'temperature' in df.columns:
# Ensure temperature is numeric (defensive check)
df['temperature'] = pd.to_numeric(df['temperature'], errors='coerce').fillna(15.0)
df['temp_squared'] = df['temperature'] ** 2
df['is_hot_day'] = (df['temperature'] > 25).astype(int) # Hot days in Madrid
df['is_cold_day'] = (df['temperature'] < 10).astype(int) # Cold days
df['is_pleasant_day'] = ((df['temperature'] >= 18) & (df['temperature'] <= 25)).astype(int)
# Temperature categories for bakery products
df['temp_category'] = pd.cut(df['temperature'],
bins=[-np.inf, 5, 15, 25, np.inf],
labels=[0, 1, 2, 3]).astype(int)
if 'precipitation' in df.columns:
# Ensure precipitation is numeric (defensive check)
df['precipitation'] = pd.to_numeric(df['precipitation'], errors='coerce').fillna(0.0)
df['is_rainy_day'] = (df['precipitation'] > 0.1).astype(int)
df['is_heavy_rain'] = (df['precipitation'] > 10).astype(int)
df['rain_intensity'] = pd.cut(df['precipitation'],
bins=[-0.1, 0, 2, 10, np.inf],
labels=[0, 1, 2, 3]).astype(int)
# Traffic-based features with NaN protection
if 'traffic_volume' in df.columns:
# Ensure traffic_volume is numeric (defensive check)
df['traffic_volume'] = pd.to_numeric(df['traffic_volume'], errors='coerce').fillna(100.0)
# Calculate traffic quantiles for relative measures
q75 = df['traffic_volume'].quantile(0.75)
q25 = df['traffic_volume'].quantile(0.25)
df['high_traffic'] = (df['traffic_volume'] > q75).astype(int)
df['low_traffic'] = (df['traffic_volume'] < q25).astype(int)
# Safe normalization with NaN protection
traffic_std = df['traffic_volume'].std()
traffic_mean = df['traffic_volume'].mean()
if traffic_std > 0 and not pd.isna(traffic_std) and not pd.isna(traffic_mean):
df['traffic_normalized'] = (df['traffic_volume'] - traffic_mean) / traffic_std
# Store normalization parameters for later use in predictions
self.scalers['traffic_mean'] = float(traffic_mean)
self.scalers['traffic_std'] = float(traffic_std)
logger.info(f"Traffic normalization parameters: mean={traffic_mean:.2f}, std={traffic_std:.2f}")
else:
logger.warning("Traffic volume has zero standard deviation, using zeros for normalized values")
df['traffic_normalized'] = 0.0
# Store default parameters for consistency
self.scalers['traffic_mean'] = 100.0 # Default traffic level used during training
self.scalers['traffic_std'] = 50.0 # Reasonable std for traffic normalization
# Fill any remaining NaN values
df['traffic_normalized'] = df['traffic_normalized'].fillna(0.0)
# Ensure other weather features are numeric if they exist
for weather_col in ['humidity', 'wind_speed', 'pressure', 'pedestrian_count', 'congestion_level', 'average_speed']:
if weather_col in df.columns:
df[weather_col] = pd.to_numeric(df[weather_col], errors='coerce').fillna(
{'humidity': 60.0, 'wind_speed': 5.0, 'pressure': 1013.0,
'pedestrian_count': 50.0, 'congestion_level': 1.0, 'average_speed': 30.0}.get(weather_col, 0.0)
)
# Interaction features - bakery specific
if 'is_weekend' in df.columns and 'temperature' in df.columns:
df['weekend_temp_interaction'] = df['is_weekend'] * df['temperature']
df['weekend_pleasant_weather'] = df['is_weekend'] * df.get('is_pleasant_day', 0)
if 'is_rainy_day' in df.columns and 'traffic_volume' in df.columns:
df['rain_traffic_interaction'] = df['is_rainy_day'] * df['traffic_volume']
if 'is_holiday' in df.columns and 'temperature' in df.columns:
df['holiday_temp_interaction'] = df['is_holiday'] * df['temperature']
# Seasonal interactions
if 'season' in df.columns and 'temperature' in df.columns:
df['season_temp_interaction'] = df['season'] * df['temperature']
# Day-of-week specific features
if 'day_of_week' in df.columns:
# Working days vs weekends
df['is_working_day'] = (~df['day_of_week'].isin([5, 6])).astype(int)
# Peak bakery days (Friday, Saturday, Sunday often busy)
df['is_peak_bakery_day'] = df['day_of_week'].isin([4, 5, 6]).astype(int)
# Month-specific features for bakery seasonality
if 'month' in df.columns:
# High-demand months (holidays, summer)
df['is_high_demand_month'] = df['month'].isin([6, 7, 8, 12]).astype(int)
# Spring/summer months
df['is_warm_season'] = df['month'].isin([4, 5, 6, 7, 8, 9]).astype(int)
# FINAL SAFETY CHECK: Remove any remaining NaN values
numeric_columns = df.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
if df[col].isna().any():
nan_count = df[col].isna().sum()
logger.warning("Found NaN values in column, filling with 0",
column=col,
nan_count=nan_count)
df[col] = df[col].fillna(0.0)
return df
def _add_advanced_features(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Add advanced features using AdvancedFeatureEngineer.
Includes lagged features, rolling statistics, cyclical encoding, and trend features.
"""
df = df.copy()
logger.info("Adding advanced features (lagged, rolling, cyclical, trends)")
# Reset feature engineer to clear previous features
self.feature_engineer = AdvancedFeatureEngineer()
# Create all advanced features at once
df = self.feature_engineer.create_all_features(
df,
date_column='date',
include_lags=True,
include_rolling=True,
include_interactions=True,
include_cyclical=True
)
# Fill NA values from lagged and rolling features
df = self.feature_engineer.fill_na_values(df, strategy='forward_backward')
# Store created feature columns for later reference
created_features = self.feature_engineer.get_feature_columns()
logger.info(f"Added {len(created_features)} advanced features",
features=created_features[:10]) # Log first 10 for brevity
return df
def _handle_missing_values(self, df: pd.DataFrame) -> pd.DataFrame:
"""Handle missing values in the dataset with improved strategies"""
df = df.copy()
# For numeric columns, use appropriate imputation strategies
numeric_columns = df.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
if col != 'quantity' and df[col].isna().any():
# Use different strategies based on column type
if 'temperature' in col:
df[col] = df[col].fillna(15.0) # Madrid average
elif 'precipitation' in col or 'rain' in col:
df[col] = df[col].fillna(0.0) # Default no rain
elif 'humidity' in col:
df[col] = df[col].fillna(60.0) # Moderate humidity
elif 'traffic' in col:
df[col] = df[col].fillna(df[col].median()) # Use median for traffic
elif 'wind' in col:
df[col] = df[col].fillna(5.0) # Light wind
elif 'pressure' in col:
df[col] = df[col].fillna(1013.0) # Standard atmospheric pressure
else:
# For other columns, use median or forward fill
if df[col].count() > 0:
df[col] = df[col].fillna(df[col].median())
else:
df[col] = df[col].fillna(0)
return df
def _handle_missing_values_future(self, df: pd.DataFrame) -> pd.DataFrame:
"""Handle missing values in future prediction data"""
numeric_columns = df.select_dtypes(include=[np.number]).columns
madrid_defaults = {
'temperature': 15.0,
'precipitation': 0.0,
'humidity': 60.0,
'wind_speed': 5.0,
'traffic_volume': 100.0,
'pedestrian_count': 50.0,
'pressure': 1013.0
}
for col in numeric_columns:
if df[col].isna().any():
# Find appropriate default value
default_value = 0
for key, value in madrid_defaults.items():
if key in col.lower():
default_value = value
break
df[col] = df[col].fillna(default_value)
return df
def _prepare_prophet_format(self, df: pd.DataFrame) -> pd.DataFrame:
"""Prepare data in Prophet format with enhanced validation"""
prophet_df = df.copy()
# Rename columns for Prophet
if 'date' in prophet_df.columns:
prophet_df = prophet_df.rename(columns={'date': 'ds'})
if 'quantity' in prophet_df.columns:
prophet_df = prophet_df.rename(columns={'quantity': 'y'})
# Ensure ds is datetime and remove timezone info
if 'ds' in prophet_df.columns:
prophet_df['ds'] = pd.to_datetime(prophet_df['ds'])
if prophet_df['ds'].dt.tz is not None:
prophet_df['ds'] = prophet_df['ds'].dt.tz_localize(None)
# Validate required columns
if 'ds' not in prophet_df.columns or 'y' not in prophet_df.columns:
raise ValueError("Prophet data must have 'ds' and 'y' columns")
# Clean target values
prophet_df = prophet_df.dropna(subset=['y'])
prophet_df['y'] = prophet_df['y'].clip(lower=0) # No negative sales
# Remove any duplicate dates (keep last occurrence)
prophet_df = prophet_df.drop_duplicates(subset=['ds'], keep='last')
# Sort by date
prophet_df = prophet_df.sort_values('ds').reset_index(drop=True)
# Final validation
if len(prophet_df) == 0:
raise ValueError("No valid data points after cleaning")
logger.info("Prophet data prepared",
rows=len(prophet_df),
date_range=f"{prophet_df['ds'].min()} to {prophet_df['ds'].max()}")
return prophet_df
def _get_season(self, month: int) -> int:
"""Get season from month (1-4 for Winter, Spring, Summer, Autumn)"""
if month in [12, 1, 2]:
return 1 # Winter
elif month in [3, 4, 5]:
return 2 # Spring
elif month in [6, 7, 8]:
return 3 # Summer
else:
return 4 # Autumn
def _is_spanish_holiday(self, date: datetime) -> bool:
"""
Check if a date is a Spanish holiday using holidays library.
Supports dynamic Easter calculation and regional holidays.
"""
try:
# Convert to date if datetime
if isinstance(date, datetime):
date = date.date()
elif isinstance(date, pd.Timestamp):
date = date.date()
# Check if date is in holidays
return date in self.spain_holidays
except Exception as e:
logger.warning(f"Error checking holiday status for {date}: {e}")
# Fallback to checking basic holidays
month_day = (date.month, date.day)
basic_holidays = [
(1, 1), (1, 6), (5, 1), (8, 15), (10, 12),
(11, 1), (12, 6), (12, 8), (12, 25)
]
return month_day in basic_holidays
def _is_school_holiday(self, date: datetime) -> bool:
"""
Check if a date is during school holidays in Spain.
Uses dynamic Easter calculation and standard Spanish school calendar.
"""
try:
from datetime import timedelta
import holidays as hol
# Convert to date if datetime
if isinstance(date, datetime):
check_date = date.date()
elif isinstance(date, pd.Timestamp):
check_date = date.date()
else:
check_date = date
month = check_date.month
day = check_date.day
# Summer holidays (July 1 - August 31)
if month in [7, 8]:
return True
# Christmas holidays (December 23 - January 7)
if (month == 12 and day >= 23) or (month == 1 and day <= 7):
return True
# Easter/Spring break (Semana Santa)
# Calculate Easter for this year
year = check_date.year
spain_hol = hol.Spain(years=year, prov=self.region)
# Find Easter dates (Viernes Santo - Good Friday, and nearby days)
# Easter break typically spans 1 week before and after Easter Sunday
for holiday_date, holiday_name in spain_hol.items():
if 'viernes santo' in holiday_name.lower() or 'easter' in holiday_name.lower():
# Easter break: 7 days before and 7 days after
easter_start = holiday_date - timedelta(days=7)
easter_end = holiday_date + timedelta(days=7)
if easter_start <= check_date <= easter_end:
return True
return False
except Exception as e:
logger.warning(f"Error checking school holiday for {date}: {e}")
# Fallback to simple approximation
month = date.month if hasattr(date, 'month') else date.month
day = date.day if hasattr(date, 'day') else date.day
return (month in [7, 8] or
(month == 12 and day >= 23) or
(month == 1 and day <= 7) or
(month == 4 and 1 <= day <= 15)) # Approximate Easter
async def calculate_feature_importance(self,
model_data: pd.DataFrame,
target_column: str = 'y') -> Dict[str, float]:
"""
Calculate feature importance for the model using correlation analysis with repository logging.
"""
try:
# Get numeric features
numeric_features = model_data.select_dtypes(include=[np.number]).columns
numeric_features = [col for col in numeric_features if col != target_column]
importance_scores = {}
if target_column not in model_data.columns:
logger.warning("Target column not found", target_column=target_column)
return {}
for feature in numeric_features:
if feature in model_data.columns:
correlation = model_data[feature].corr(model_data[target_column])
if not pd.isna(correlation) and not np.isinf(correlation):
importance_scores[feature] = abs(correlation)
# Sort by importance
importance_scores = dict(sorted(importance_scores.items(),
key=lambda x: x[1], reverse=True))
logger.info("Calculated feature importance",
features_count=len(importance_scores))
return importance_scores
except Exception as e:
logger.error("Error calculating feature importance", error=str(e))
return {}
async def get_data_quality_report(self, df: pd.DataFrame) -> Dict[str, Any]:
"""
Generate a comprehensive data quality report with repository integration.
"""
try:
report = {
"total_records": len(df),
"date_range": {
"start": df['ds'].min().isoformat() if 'ds' in df.columns else None,
"end": df['ds'].max().isoformat() if 'ds' in df.columns else None,
"duration_days": (df['ds'].max() - df['ds'].min()).days if 'ds' in df.columns else 0
},
"missing_values": {},
"data_completeness": 0.0,
"target_statistics": {},
"feature_count": 0
}
# Calculate missing values
missing_counts = df.isnull().sum()
total_cells = len(df)
for col in df.columns:
missing_count = missing_counts[col]
report["missing_values"][col] = {
"count": int(missing_count),
"percentage": round((missing_count / total_cells) * 100, 2)
}
# Overall completeness
total_missing = missing_counts.sum()
total_possible = len(df) * len(df.columns)
report["data_completeness"] = round(((total_possible - total_missing) / total_possible) * 100, 2)
# Target variable statistics
if 'y' in df.columns:
y_col = df['y']
report["target_statistics"] = {
"mean": round(y_col.mean(), 2),
"median": round(y_col.median(), 2),
"std": round(y_col.std(), 2),
"min": round(y_col.min(), 2),
"max": round(y_col.max(), 2),
"zero_count": int((y_col == 0).sum()),
"zero_percentage": round(((y_col == 0).sum() / len(y_col)) * 100, 2)
}
# Feature count
numeric_features = df.select_dtypes(include=[np.number]).columns
report["feature_count"] = len([col for col in numeric_features if col not in ['y', 'ds']])
return report
except Exception as e:
logger.error("Error generating data quality report", error=str(e))
return {"error": str(e)}