70 lines
3.2 KiB
Python
70 lines
3.2 KiB
Python
# ================================================================
|
|
# TRAINING SERVICE CONFIGURATION
|
|
# services/training/app/core/config.py
|
|
# ================================================================
|
|
|
|
"""
|
|
Training service configuration
|
|
ML model training and management
|
|
"""
|
|
|
|
from shared.config.base import BaseServiceSettings
|
|
import os
|
|
|
|
class TrainingSettings(BaseServiceSettings):
|
|
"""Training service specific settings"""
|
|
|
|
# Service Identity
|
|
APP_NAME: str = "Training Service"
|
|
SERVICE_NAME: str = "training-service"
|
|
DESCRIPTION: str = "Machine learning model training service"
|
|
|
|
# Database Configuration
|
|
DATABASE_URL: str = os.getenv("TRAINING_DATABASE_URL",
|
|
"postgresql+asyncpg://training_user:training_pass123@training-db:5432/training_db")
|
|
|
|
# Redis Database (dedicated for training cache)
|
|
REDIS_DB: int = 1
|
|
|
|
# ML Model Storage
|
|
MODEL_STORAGE_PATH: str = os.getenv("MODEL_STORAGE_PATH", "/app/models")
|
|
MODEL_BACKUP_ENABLED: bool = os.getenv("MODEL_BACKUP_ENABLED", "true").lower() == "true"
|
|
MODEL_VERSIONING_ENABLED: bool = os.getenv("MODEL_VERSIONING_ENABLED", "true").lower() == "true"
|
|
|
|
# Training Configuration
|
|
MAX_TRAINING_TIME_MINUTES: int = int(os.getenv("MAX_TRAINING_TIME_MINUTES", "30"))
|
|
MAX_CONCURRENT_TRAINING_JOBS: int = int(os.getenv("MAX_CONCURRENT_TRAINING_JOBS", "3"))
|
|
MIN_TRAINING_DATA_DAYS: int = int(os.getenv("MIN_TRAINING_DATA_DAYS", "30"))
|
|
TRAINING_BATCH_SIZE: int = int(os.getenv("TRAINING_BATCH_SIZE", "1000"))
|
|
|
|
# Prophet Specific Configuration
|
|
PROPHET_SEASONALITY_MODE: str = os.getenv("PROPHET_SEASONALITY_MODE", "additive")
|
|
PROPHET_CHANGEPOINT_PRIOR_SCALE: float = float(os.getenv("PROPHET_CHANGEPOINT_PRIOR_SCALE", "0.05"))
|
|
PROPHET_SEASONALITY_PRIOR_SCALE: float = float(os.getenv("PROPHET_SEASONALITY_PRIOR_SCALE", "10.0"))
|
|
PROPHET_HOLIDAYS_PRIOR_SCALE: float = float(os.getenv("PROPHET_HOLIDAYS_PRIOR_SCALE", "10.0"))
|
|
|
|
# Spanish Holiday Integration
|
|
ENABLE_SPANISH_HOLIDAYS: bool = True
|
|
ENABLE_MADRID_HOLIDAYS: bool = True
|
|
ENABLE_CUSTOM_HOLIDAYS: bool = os.getenv("ENABLE_CUSTOM_HOLIDAYS", "true").lower() == "true"
|
|
|
|
# Data Processing
|
|
DATA_PREPROCESSING_ENABLED: bool = True
|
|
OUTLIER_DETECTION_ENABLED: bool = os.getenv("OUTLIER_DETECTION_ENABLED", "true").lower() == "true"
|
|
SEASONAL_DECOMPOSITION_ENABLED: bool = os.getenv("SEASONAL_DECOMPOSITION_ENABLED", "true").lower() == "true"
|
|
|
|
# Model Validation
|
|
CROSS_VALIDATION_ENABLED: bool = os.getenv("CROSS_VALIDATION_ENABLED", "true").lower() == "true"
|
|
VALIDATION_SPLIT_RATIO: float = float(os.getenv("VALIDATION_SPLIT_RATIO", "0.2"))
|
|
MIN_MODEL_ACCURACY: float = float(os.getenv("MIN_MODEL_ACCURACY", "0.7"))
|
|
|
|
# Distributed Training (for future scaling)
|
|
DISTRIBUTED_TRAINING_ENABLED: bool = os.getenv("DISTRIBUTED_TRAINING_ENABLED", "false").lower() == "true"
|
|
TRAINING_WORKER_COUNT: int = int(os.getenv("TRAINING_WORKER_COUNT", "1"))
|
|
|
|
PROPHET_DAILY_SEASONALITY: bool = True
|
|
PROPHET_WEEKLY_SEASONALITY: bool = True
|
|
PROPHET_YEARLY_SEASONALITY: bool = True
|
|
PROPHET_SEASONALITY_MODE: str = "additive"
|
|
|
|
settings = TrainingSettings() |