Files
bakery-ia/services/production
Claude 2ced1ec670 feat: Complete JTBD-aligned bakery dashboard redesign
Implements comprehensive dashboard redesign based on Jobs To Be Done methodology
focused on answering: "What requires my attention right now?"

## Backend Implementation

### Dashboard Service (NEW)
- Health status calculation (green/yellow/red traffic light)
- Action queue prioritization (critical/important/normal)
- Orchestration summary with narrative format
- Production timeline transformation
- Insights calculation and consequence prediction

### API Endpoints (NEW)
- GET /dashboard/health-status - Overall bakery health indicator
- GET /dashboard/orchestration-summary - What system did automatically
- GET /dashboard/action-queue - Prioritized tasks requiring attention
- GET /dashboard/production-timeline - Today's production schedule
- GET /dashboard/insights - Key metrics (savings, inventory, waste, deliveries)

### Enhanced Models
- PurchaseOrder: Added reasoning, consequence, reasoning_data fields
- ProductionBatch: Added reasoning, reasoning_data fields
- Enables transparency into automation decisions

## Frontend Implementation

### API Hooks (NEW)
- useBakeryHealthStatus() - Real-time health monitoring
- useOrchestrationSummary() - System transparency
- useActionQueue() - Prioritized action management
- useProductionTimeline() - Production tracking
- useInsights() - Glanceable metrics

### Dashboard Components (NEW)
- HealthStatusCard: Traffic light indicator with checklist
- ActionQueueCard: Prioritized actions with reasoning/consequences
- OrchestrationSummaryCard: Narrative of what system did
- ProductionTimelineCard: Chronological production view
- InsightsGrid: 2x2 grid of key metrics

### Main Dashboard Page (REPLACED)
- Complete rewrite with mobile-first design
- All sections integrated with error handling
- Real-time refresh and quick action links
- Old dashboard backed up as DashboardPage.legacy.tsx

## Key Features

### Automation-First
- Shows what orchestrator did overnight
- Builds trust through transparency
- Explains reasoning for all automated decisions

### Action-Oriented
- Prioritizes tasks over information display
- Clear consequences for each action
- Large touch-friendly buttons

### Progressive Disclosure
- Shows 20% of info that matters 80% of time
- Expandable details when needed
- No overwhelming metrics

### Mobile-First
- One-handed operation
- Large touch targets (min 44px)
- Responsive grid layouts

### Trust-Building
- Narrative format ("I planned your day")
- Reasoning inputs transparency
- Clear status indicators

## User Segments Supported

1. Solo Bakery Owner (Primary)
   - Simple health indicator
   - Action checklist (max 3-5 items)
   - Mobile-optimized

2. Multi-Location Owner
   - Multi-tenant support (existing)
   - Comparison capabilities
   - Delegation ready

3. Enterprise/Central Bakery (Future)
   - Network topology support
   - Advanced analytics ready

## JTBD Analysis Delivered

Main Job: "Help me quickly understand bakery status and know what needs my intervention"

Emotional Jobs Addressed:
- Feel in control despite automation
- Reduce daily anxiety
- Feel competent with technology
- Trust system as safety net

Social Jobs Addressed:
- Demonstrate professional management
- Avoid being bottleneck
- Show sustainability

## Technical Stack

Backend: Python, FastAPI, SQLAlchemy, PostgreSQL
Frontend: React, TypeScript, TanStack Query, Tailwind CSS
Architecture: Microservices with circuit breakers

## Breaking Changes

- Complete dashboard page rewrite (old version backed up)
- New API endpoints require orchestrator service deployment
- Database migrations needed for reasoning fields

## Migration Required

Run migrations to add new model fields:
- purchase_orders: reasoning, consequence, reasoning_data
- production_batches: reasoning, reasoning_data

## Documentation

See DASHBOARD_REDESIGN_SUMMARY.md for complete implementation details,
JTBD analysis, success metrics, and deployment guide.

BREAKING CHANGE: Dashboard page completely redesigned with new data structures
2025-11-07 17:10:17 +00:00
..
2025-10-30 21:08:07 +01:00
2025-11-05 13:34:56 +01:00
2025-09-30 08:12:45 +02:00
2025-11-06 14:10:04 +01:00
2025-11-05 13:34:56 +01:00

Production Service

Overview

The Production Service orchestrates all bakery manufacturing operations, from automated production scheduling based on forecasts to quality control tracking and equipment management. It transforms demand predictions into actionable production plans, ensuring optimal efficiency, consistent quality, and minimal waste. This service is the bridge between forecasting intelligence and actual bakery operations.

Key Features

Automated Production Planning

  • Forecast-Driven Scheduling - Automatic production schedules from demand forecasts
  • Batch Management - Track all production batches from start to finish
  • Capacity Planning - Optimize production capacity utilization
  • Multi-Day Scheduling - Plan production up to 7 days ahead
  • Recipe Integration - Automatic ingredient calculation from recipes
  • Equipment Scheduling - Allocate ovens, mixers, and equipment efficiently

Production Execution

  • Batch Tracking - Real-time status of all active production batches
  • Production Logs - Detailed execution records with timestamps
  • Ingredient Consumption - Automatic FIFO stock deduction
  • Yield Tracking - Actual vs. expected production yields
  • Waste Recording - Track production waste and reasons
  • Real-Time Alerts - Notifications for production issues

Quality Control

  • Quality Check Templates - Standardized quality control forms
  • Digital Checklists - Paperless quality inspections
  • Quality Metrics - Track quality scores over time
  • Non-Conformance Tracking - Record and resolve quality issues
  • Batch Quality History - Complete quality audit trail

Equipment Management

  • Equipment Tracking - All bakery equipment inventory
  • Maintenance Schedules - Preventive maintenance tracking
  • Equipment Usage - Monitor utilization and performance
  • Downtime Logging - Track equipment failures
  • Maintenance Alerts - Automatic maintenance reminders

Analytics & Reporting

  • Production Dashboard - Real-time production KPIs
  • Efficiency Metrics - OEE (Overall Equipment Effectiveness)
  • Cost Analysis - Production cost per batch
  • Trend Analysis - Historical production patterns
  • Performance Reports - Daily, weekly, monthly summaries

Business Value

For Bakery Owners

  • Automated Scheduling - Save 10-15 hours/week on production planning
  • Waste Reduction - 15-25% reduction through optimized batch sizes
  • Quality Consistency - Standardized processes across all batches
  • Cost Control - Track and reduce production costs
  • Compliance - Complete production audit trail

Quantifiable Impact

  • Time Savings: 10-15 hours/week on planning
  • Waste Reduction: 15-25% through optimization
  • Cost Savings: €300-800/month from efficiency gains
  • Quality Improvement: 20-30% fewer defects
  • Capacity Utilization: 85%+ (vs 65-70% manual)

For Production Staff

  • Clear Instructions - Digital recipes and batch cards
  • Quality Guidance - Step-by-step quality checks
  • Equipment Visibility - Know what's available
  • Prioritization - Know what to produce first

Technology Stack

  • Framework: FastAPI (Python 3.11+) - Async web framework
  • Database: PostgreSQL 17 - Production data
  • Caching: Redis 7.4 - Dashboard KPIs
  • Messaging: RabbitMQ 4.1 - Alert publishing
  • ORM: SQLAlchemy 2.0 (async) - Database abstraction
  • Logging: Structlog - Structured JSON logging
  • Metrics: Prometheus Client - Custom metrics

API Endpoints (Key Routes)

Production Scheduling

  • GET /api/v1/production/schedules - List production schedules
  • POST /api/v1/production/schedules - Create production schedule
  • GET /api/v1/production/schedules/{schedule_id} - Get schedule details
  • PUT /api/v1/production/schedules/{schedule_id} - Update schedule
  • POST /api/v1/production/schedules/generate - Auto-generate from forecasts

Batch Management

  • GET /api/v1/production/batches - List production batches
  • POST /api/v1/production/batches - Create production batch
  • GET /api/v1/production/batches/{batch_id} - Get batch details
  • PUT /api/v1/production/batches/{batch_id}/status - Update batch status
  • POST /api/v1/production/batches/{batch_id}/complete - Complete batch

Quality Control

  • GET /api/v1/production/quality/templates - List QC templates
  • POST /api/v1/production/quality/checks - Record quality check
  • GET /api/v1/production/quality/checks/{batch_id} - Get batch quality
  • GET /api/v1/production/quality/metrics - Quality metrics dashboard

Equipment Management

  • GET /api/v1/production/equipment - List all equipment
  • POST /api/v1/production/equipment - Add equipment
  • PUT /api/v1/production/equipment/{equipment_id} - Update equipment
  • POST /api/v1/production/equipment/{equipment_id}/maintenance - Log maintenance

Analytics

  • GET /api/v1/production/dashboard - Production dashboard KPIs
  • GET /api/v1/production/analytics/efficiency - Efficiency metrics
  • GET /api/v1/production/analytics/costs - Cost analysis
  • GET /api/v1/production/analytics/waste - Waste analysis

Database Schema

Main Tables

production_schedules

CREATE TABLE production_schedules (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    schedule_name VARCHAR(255),
    schedule_date DATE NOT NULL,
    status VARCHAR(50) DEFAULT 'pending',    -- pending, in_progress, completed
    total_batches INTEGER DEFAULT 0,
    completed_batches INTEGER DEFAULT 0,
    generated_from_forecast_id UUID,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW(),
    INDEX idx_tenant_date (tenant_id, schedule_date)
);

production_batches

CREATE TABLE production_batches (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    schedule_id UUID REFERENCES production_schedules(id),
    batch_number VARCHAR(100) NOT NULL,
    product_id UUID NOT NULL,
    recipe_id UUID NOT NULL,
    quantity_planned DECIMAL(10, 2) NOT NULL,
    quantity_actual DECIMAL(10, 2),
    unit VARCHAR(50) NOT NULL,
    status VARCHAR(50) DEFAULT 'planned',    -- planned, in_progress, quality_check, completed, failed
    priority INTEGER DEFAULT 5,
    start_time TIMESTAMP,
    end_time TIMESTAMP,
    assigned_to UUID,
    equipment_used JSONB,
    notes TEXT,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW(),
    UNIQUE(tenant_id, batch_number)
);

quality_check_templates

CREATE TABLE quality_check_templates (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    template_name VARCHAR(255) NOT NULL,
    product_category VARCHAR(100),
    check_items JSONB NOT NULL,              -- Array of check items with criteria
    passing_score INTEGER DEFAULT 80,
    is_active BOOLEAN DEFAULT TRUE,
    created_at TIMESTAMP DEFAULT NOW()
);

quality_checks

CREATE TABLE quality_checks (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    batch_id UUID REFERENCES production_batches(id),
    template_id UUID REFERENCES quality_check_templates(id),
    performed_by UUID NOT NULL,
    check_results JSONB NOT NULL,            -- Results for each check item
    overall_score INTEGER,
    passed BOOLEAN,
    issues_found TEXT,
    corrective_actions TEXT,
    performed_at TIMESTAMP DEFAULT NOW()
);

equipment

CREATE TABLE equipment (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    equipment_name VARCHAR(255) NOT NULL,
    equipment_type VARCHAR(100),             -- oven, mixer, proofer, etc.
    capacity VARCHAR(100),
    location VARCHAR(255),
    status VARCHAR(50) DEFAULT 'operational', -- operational, maintenance, broken
    last_maintenance_date DATE,
    next_maintenance_date DATE,
    maintenance_interval_days INTEGER DEFAULT 90,
    total_usage_hours INTEGER DEFAULT 0,
    created_at TIMESTAMP DEFAULT NOW(),
    UNIQUE(tenant_id, equipment_name)
);

production_capacity

CREATE TABLE production_capacity (
    id UUID PRIMARY KEY,
    tenant_id UUID NOT NULL,
    date DATE NOT NULL,
    shift VARCHAR(50),                       -- morning, afternoon, night
    available_hours DECIMAL(5, 2),
    used_hours DECIMAL(5, 2) DEFAULT 0,
    utilization_percentage DECIMAL(5, 2),
    created_at TIMESTAMP DEFAULT NOW(),
    UNIQUE(tenant_id, date, shift)
);

Events & Messaging

Published Events (RabbitMQ)

Exchange: production Routing Keys: production.batch.completed, production.quality.issue, production.equipment.maintenance

Batch Completed Event

{
    "event_type": "batch_completed",
    "tenant_id": "uuid",
    "batch_id": "uuid",
    "batch_number": "BATCH-2025-1106-001",
    "product_id": "uuid",
    "product_name": "Baguette",
    "quantity_planned": 100,
    "quantity_actual": 98,
    "yield_percentage": 98.0,
    "quality_score": 92,
    "quality_passed": true,
    "duration_minutes": 240,
    "completed_at": "2025-11-06T14:30:00Z",
    "timestamp": "2025-11-06T14:30:00Z"
}

Quality Issue Alert

{
    "event_type": "quality_issue",
    "tenant_id": "uuid",
    "batch_id": "uuid",
    "product_name": "Croissant",
    "quality_score": 65,
    "passing_score": 80,
    "issues_found": "Color too dark, texture inconsistent",
    "severity": "high",
    "corrective_actions": "Adjust oven temperature, check proofing time",
    "timestamp": "2025-11-06T10:30:00Z"
}

Consumed Events

  • From Forecasting: Daily forecasts for production planning
  • From Orchestrator: Scheduled production triggers
  • From Inventory: Stock availability checks

Custom Metrics (Prometheus)

# Production metrics
batches_produced_total = Counter(
    'production_batches_total',
    'Total production batches',
    ['tenant_id', 'product_category', 'status']
)

production_yield_percentage = Histogram(
    'production_yield_percentage',
    'Production yield percentage',
    ['tenant_id', 'product_id'],
    buckets=[70, 80, 85, 90, 95, 98, 100]
)

# Quality metrics
quality_checks_total = Counter(
    'production_quality_checks_total',
    'Total quality checks performed',
    ['tenant_id', 'passed']
)

quality_score_distribution = Histogram(
    'production_quality_score',
    'Quality score distribution',
    ['tenant_id'],
    buckets=[50, 60, 70, 80, 85, 90, 95, 100]
)

# Efficiency metrics
production_duration_minutes = Histogram(
    'production_duration_minutes',
    'Production batch duration',
    ['tenant_id', 'product_category'],
    buckets=[30, 60, 120, 180, 240, 360, 480]
)

capacity_utilization = Gauge(
    'production_capacity_utilization_percentage',
    'Production capacity utilization',
    ['tenant_id', 'shift']
)

Configuration

Environment Variables

Service Configuration:

  • PORT - Service port (default: 8007)
  • DATABASE_URL - PostgreSQL connection string
  • REDIS_URL - Redis connection string
  • RABBITMQ_URL - RabbitMQ connection string

Production Configuration:

  • DEFAULT_BATCH_SIZE - Standard batch size (default: 100)
  • MAX_BATCHES_PER_DAY - Maximum daily batches (default: 20)
  • ENABLE_AUTO_SCHEDULING - Auto-generate schedules (default: true)
  • SCHEDULE_GENERATION_TIME - Daily schedule time (default: "08:00")

Quality Control:

  • DEFAULT_PASSING_SCORE - Minimum quality score (default: 80)
  • ENABLE_QUALITY_ALERTS - Alert on quality issues (default: true)
  • QUALITY_CHECK_REQUIRED - Require QC for all batches (default: true)

Equipment:

  • MAINTENANCE_REMINDER_DAYS - Days before maintenance (default: 7)
  • ENABLE_EQUIPMENT_TRACKING - Track equipment usage (default: true)

Development Setup

Prerequisites

  • Python 3.11+
  • PostgreSQL 17
  • Redis 7.4
  • RabbitMQ 4.1

Local Development

cd services/production
python -m venv venv
source venv/bin/activate

pip install -r requirements.txt

export DATABASE_URL=postgresql://user:pass@localhost:5432/production
export REDIS_URL=redis://localhost:6379/0
export RABBITMQ_URL=amqp://guest:guest@localhost:5672/

alembic upgrade head
python main.py

Integration Points

Dependencies

  • Forecasting Service - Demand forecasts for scheduling
  • Recipes Service - Recipe details for batches
  • Inventory Service - Stock availability and consumption
  • Equipment data - Equipment tracking
  • PostgreSQL - Production data storage
  • Redis - Dashboard caching
  • RabbitMQ - Event publishing

Dependents

  • Inventory Service - Ingredient consumption updates
  • AI Insights Service - Production efficiency insights
  • Orchestrator Service - Triggers daily scheduling
  • Frontend Dashboard - Display production status

Business Value for VUE Madrid

  • Automation: 10-15 hours/week saved on manual planning
  • Waste Reduction: 15-25% through optimized scheduling
  • Quality Improvement: Standardized processes, 20-30% fewer defects
  • Compliance: Complete production audit trail
  • Efficiency: 85%+ capacity utilization vs 65-70% manual

Copyright © 2025 Bakery-IA. All rights reserved.