Files
bakery-ia/services/training/app/api/models.py
2025-07-29 19:11:36 +02:00

215 lines
7.9 KiB
Python

"""
Models API endpoints
"""
from fastapi import APIRouter, Depends, HTTPException, status, Path, Query
from sqlalchemy.ext.asyncio import AsyncSession
from typing import List, Optional
import structlog
from sqlalchemy import text
from app.core.database import get_db
from app.schemas.training import TrainedModelResponse, ModelMetricsResponse
from app.services.training_service import TrainingService
from datetime import datetime
from shared.auth.decorators import (
get_current_tenant_id_dep
)
logger = structlog.get_logger()
router = APIRouter()
training_service = TrainingService()
@router.get("/tenants/{tenant_id}/models/{product_name}/active")
async def get_active_model(
tenant_id: str = Path(..., description="Tenant ID"),
product_name: str = Path(..., description="Product name"),
db: AsyncSession = Depends(get_db)
):
"""
Get the active model for a product - used by forecasting service
"""
try:
# ✅ FIX: Wrap SQL with text() for SQLAlchemy 2.0
query = text("""
SELECT * FROM trained_models
WHERE tenant_id = :tenant_id
AND product_name = :product_name
AND is_active = true
AND is_production = true
ORDER BY created_at DESC
LIMIT 1
""")
result = await db.execute(query, {
"tenant_id": tenant_id,
"product_name": product_name
})
model_record = result.fetchone()
if not model_record:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"No active model found for product {product_name}"
)
# ✅ FIX: Wrap update query with text() too
update_query = text("""
UPDATE trained_models
SET last_used_at = :now
WHERE id = :model_id
""")
await db.execute(update_query, {
"now": datetime.utcnow(),
"model_id": model_record.id
})
await db.commit()
return {
"model_id": model_record.id, # ✅ This is the correct field name
"model_path": model_record.model_path,
"features_used": model_record.features_used,
"hyperparameters": model_record.hyperparameters,
"training_metrics": {
"mape": model_record.mape,
"mae": model_record.mae,
"rmse": model_record.rmse,
"r2_score": model_record.r2_score
},
"created_at": model_record.created_at.isoformat() if model_record.created_at else None,
"training_period": {
"start_date": model_record.training_start_date.isoformat() if model_record.training_start_date else None,
"end_date": model_record.training_end_date.isoformat() if model_record.training_end_date else None
}
}
except Exception as e:
logger.error(f"Failed to get active model: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to retrieve model"
)
@router.get("/tenants/{tenant_id}/models/{model_id}/metrics", response_model=ModelMetricsResponse)
async def get_model_metrics(
model_id: str = Path(..., description="Model ID"),
db: AsyncSession = Depends(get_db)
):
"""
Get performance metrics for a specific model - used by forecasting service
"""
try:
# Query the model by ID
query = text("""
SELECT * FROM trained_models
WHERE id = :model_id
""")
result = await db.execute(query, {"model_id": model_id})
model_record = result.fetchone()
if not model_record:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Model {model_id} not found"
)
# Return metrics in the format expected by forecasting service
metrics = {
"model_id": model_record.id,
"accuracy": model_record.r2_score or 0.0, # Use R2 as accuracy measure
"mape": model_record.mape or 0.0,
"mae": model_record.mae or 0.0,
"rmse": model_record.rmse or 0.0,
"r2_score": model_record.r2_score or 0.0,
"training_samples": model_record.training_samples or 0,
"features_used": model_record.features_used or [],
"model_type": model_record.model_type,
"created_at": model_record.created_at.isoformat() if model_record.created_at else None,
"last_used_at": model_record.last_used_at.isoformat() if model_record.last_used_at else None
}
logger.info(f"Retrieved metrics for model {model_id}",
mape=metrics["mape"],
accuracy=metrics["accuracy"])
return metrics
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to get model metrics: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to retrieve model metrics"
)
@router.get("/tenants/{tenant_id}/models", response_model=List[TrainedModelResponse])
async def list_models(
tenant_id: str = Path(..., description="Tenant ID"),
status: Optional[str] = Query(None, description="Filter by status (active/inactive)"),
model_type: Optional[str] = Query(None, description="Filter by model type"),
limit: int = Query(50, ge=1, le=100, description="Maximum number of models to return"),
db: AsyncSession = Depends(get_db)
):
"""
List models for a tenant - used by forecasting service for model discovery
"""
try:
# Build query with filters
query_parts = ["SELECT * FROM trained_models WHERE tenant_id = :tenant_id"]
params = {"tenant_id": tenant_id}
if status == "deployed" or status == "active":
query_parts.append("AND is_active = true AND is_production = true")
elif status == "inactive":
query_parts.append("AND (is_active = false OR is_production = false)")
if model_type:
query_parts.append("AND model_type = :model_type")
params["model_type"] = model_type
query_parts.append("ORDER BY created_at DESC LIMIT :limit")
params["limit"] = limit
query = text(" ".join(query_parts))
result = await db.execute(query, params)
model_records = result.fetchall()
models = []
for record in model_records:
models.append({
"model_id": record.id,
"tenant_id": record.tenant_id,
"product_name": record.product_name,
"model_type": record.model_type,
"model_path": record.model_path,
"version": 1, # Default version
"training_samples": record.training_samples or 0,
"features": record.features_used or [],
"hyperparameters": record.hyperparameters or {},
"training_metrics": {
"mape": record.mape or 0.0,
"mae": record.mae or 0.0,
"rmse": record.rmse or 0.0,
"r2_score": record.r2_score or 0.0
},
"is_active": record.is_active,
"created_at": record.created_at,
"data_period_start": record.training_start_date,
"data_period_end": record.training_end_date
})
logger.info(f"Retrieved {len(models)} models for tenant {tenant_id}")
return models
except Exception as e:
logger.error(f"Failed to list models: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to retrieve models"
)