Files
bakery-ia/shared/ml/enhanced_features.py
2025-11-14 07:23:56 +01:00

348 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Enhanced Feature Engineering for Hybrid Prophet + XGBoost Models
Adds lagged features, rolling statistics, and advanced interactions
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional
import structlog
from shared.ml.feature_calculator import HistoricalFeatureCalculator
logger = structlog.get_logger()
class AdvancedFeatureEngineer:
"""
Advanced feature engineering for hybrid forecasting models.
Adds lagged features, rolling statistics, and complex interactions.
"""
def __init__(self):
self.feature_columns = []
self.feature_calculator = HistoricalFeatureCalculator()
def add_lagged_features(self, df: pd.DataFrame, lag_days: List[int] = None) -> pd.DataFrame:
"""
Add lagged demand features for capturing recent trends.
Uses shared feature calculator for consistency with prediction service.
Args:
df: DataFrame with 'quantity' column
lag_days: List of lag periods (default: [1, 7, 14])
Returns:
DataFrame with added lagged features
"""
if lag_days is None:
lag_days = [1, 7, 14]
# Use shared calculator for consistent lag calculation
df = self.feature_calculator.calculate_lag_features(
df,
lag_days=lag_days,
mode='training'
)
# Update feature columns list
for lag in lag_days:
col_name = f'lag_{lag}_day'
if col_name not in self.feature_columns:
self.feature_columns.append(col_name)
logger.info(f"Added {len(lag_days)} lagged features (using shared calculator)", lags=lag_days)
return df
def add_rolling_features(
self,
df: pd.DataFrame,
windows: List[int] = None,
features: List[str] = None
) -> pd.DataFrame:
"""
Add rolling statistics (mean, std, max, min).
Uses shared feature calculator for consistency with prediction service.
Args:
df: DataFrame with 'quantity' column
windows: List of window sizes (default: [7, 14, 30])
features: List of statistics to calculate (default: ['mean', 'std', 'max', 'min'])
Returns:
DataFrame with rolling features
"""
if windows is None:
windows = [7, 14, 30]
if features is None:
features = ['mean', 'std', 'max', 'min']
# Use shared calculator for consistent rolling calculation
df = self.feature_calculator.calculate_rolling_features(
df,
windows=windows,
statistics=features,
mode='training'
)
# Update feature columns list
for window in windows:
for feature in features:
col_name = f'rolling_{feature}_{window}d'
if col_name not in self.feature_columns:
self.feature_columns.append(col_name)
logger.info(f"Added rolling features (using shared calculator)", windows=windows, features=features)
return df
def add_day_of_week_features(self, df: pd.DataFrame, date_column: str = 'date') -> pd.DataFrame:
"""
Add enhanced day-of-week features.
Args:
df: DataFrame with date column
date_column: Name of date column
Returns:
DataFrame with day-of-week features
"""
df = df.copy()
# Day of week (0=Monday, 6=Sunday)
df['day_of_week'] = df[date_column].dt.dayofweek
# Is weekend
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)
# Is Friday (often higher demand due to weekend prep)
df['is_friday'] = (df['day_of_week'] == 4).astype(int)
# Is Monday (often lower demand after weekend)
df['is_monday'] = (df['day_of_week'] == 0).astype(int)
# Add to feature list
for col in ['day_of_week', 'is_weekend', 'is_friday', 'is_monday']:
if col not in self.feature_columns:
self.feature_columns.append(col)
return df
def add_calendar_enhanced_features(self, df: pd.DataFrame, date_column: str = 'date') -> pd.DataFrame:
"""
Add enhanced calendar features beyond basic temporal features.
Args:
df: DataFrame with date column
date_column: Name of date column
Returns:
DataFrame with enhanced calendar features
"""
df = df.copy()
# Month and quarter (if not already present)
if 'month' not in df.columns:
df['month'] = df[date_column].dt.month
if 'quarter' not in df.columns:
df['quarter'] = df[date_column].dt.quarter
# Day of month
df['day_of_month'] = df[date_column].dt.day
# Is month start/end
df['is_month_start'] = (df['day_of_month'] <= 3).astype(int)
df['is_month_end'] = (df[date_column].dt.is_month_end).astype(int)
# Week of year
df['week_of_year'] = df[date_column].dt.isocalendar().week
# Payday indicators (15th and last day of month - high bakery traffic)
df['is_payday'] = ((df['day_of_month'] == 15) | df[date_column].dt.is_month_end).astype(int)
# Add to feature list
for col in ['month', 'quarter', 'day_of_month', 'is_month_start', 'is_month_end',
'week_of_year', 'is_payday']:
if col not in self.feature_columns:
self.feature_columns.append(col)
return df
def add_interaction_features(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Add interaction features between variables.
Args:
df: DataFrame with base features
Returns:
DataFrame with interaction features
"""
df = df.copy()
# Weekend × Temperature (people buy more cold drinks in hot weekends)
if 'is_weekend' in df.columns and 'temperature' in df.columns:
df['weekend_temp_interaction'] = df['is_weekend'] * df['temperature']
self.feature_columns.append('weekend_temp_interaction')
# Rain × Weekend (bad weather reduces weekend traffic)
if 'is_weekend' in df.columns and 'precipitation' in df.columns:
df['rain_weekend_interaction'] = df['is_weekend'] * (df['precipitation'] > 0).astype(int)
self.feature_columns.append('rain_weekend_interaction')
# Friday × Traffic (high Friday traffic means weekend prep buying)
if 'is_friday' in df.columns and 'traffic_volume' in df.columns:
df['friday_traffic_interaction'] = df['is_friday'] * df['traffic_volume']
self.feature_columns.append('friday_traffic_interaction')
# Month × Temperature (seasonal temperature patterns)
if 'month' in df.columns and 'temperature' in df.columns:
df['month_temp_interaction'] = df['month'] * df['temperature']
self.feature_columns.append('month_temp_interaction')
# Payday × Weekend (big shopping days)
if 'is_payday' in df.columns and 'is_weekend' in df.columns:
df['payday_weekend_interaction'] = df['is_payday'] * df['is_weekend']
self.feature_columns.append('payday_weekend_interaction')
logger.info(f"Added {len([c for c in self.feature_columns if 'interaction' in c])} interaction features")
return df
def add_trend_features(self, df: pd.DataFrame, date_column: str = 'date') -> pd.DataFrame:
"""
Add trend-based features.
Uses shared feature calculator for consistency with prediction service.
Args:
df: DataFrame with date and quantity
date_column: Name of date column
Returns:
DataFrame with trend features
"""
# Use shared calculator for consistent trend calculation
df = self.feature_calculator.calculate_trend_features(
df,
mode='training'
)
# Update feature columns list
for feature_name in ['days_since_start', 'momentum_1_7', 'trend_7_30', 'velocity_week']:
if feature_name in df.columns and feature_name not in self.feature_columns:
self.feature_columns.append(feature_name)
logger.debug("Added trend features (using shared calculator)")
return df
def add_cyclical_encoding(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Add cyclical encoding for periodic features (day_of_week, month).
Helps models understand that Monday follows Sunday, December follows January.
Args:
df: DataFrame with day_of_week and month columns
Returns:
DataFrame with cyclical features
"""
df = df.copy()
# Day of week cyclical encoding
if 'day_of_week' in df.columns:
df['day_of_week_sin'] = np.sin(2 * np.pi * df['day_of_week'] / 7)
df['day_of_week_cos'] = np.cos(2 * np.pi * df['day_of_week'] / 7)
self.feature_columns.extend(['day_of_week_sin', 'day_of_week_cos'])
# Month cyclical encoding
if 'month' in df.columns:
df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12)
df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12)
self.feature_columns.extend(['month_sin', 'month_cos'])
logger.info("Added cyclical encoding for temporal features")
return df
def create_all_features(
self,
df: pd.DataFrame,
date_column: str = 'date',
include_lags: bool = True,
include_rolling: bool = True,
include_interactions: bool = True,
include_cyclical: bool = True
) -> pd.DataFrame:
"""
Create all enhanced features in one go.
Args:
df: DataFrame with base data
date_column: Name of date column
include_lags: Whether to include lagged features
include_rolling: Whether to include rolling statistics
include_interactions: Whether to include interaction features
include_cyclical: Whether to include cyclical encoding
Returns:
DataFrame with all enhanced features
"""
logger.info("Creating comprehensive feature set for hybrid model")
# Reset feature list
self.feature_columns = []
# Day of week and calendar features (always needed)
df = self.add_day_of_week_features(df, date_column)
df = self.add_calendar_enhanced_features(df, date_column)
# Optional features
if include_lags:
df = self.add_lagged_features(df)
if include_rolling:
df = self.add_rolling_features(df)
if include_interactions:
df = self.add_interaction_features(df)
if include_cyclical:
df = self.add_cyclical_encoding(df)
# Trend features (depends on lags and rolling)
if include_lags or include_rolling:
df = self.add_trend_features(df, date_column)
logger.info(f"Created {len(self.feature_columns)} enhanced features for hybrid model")
return df
def get_feature_columns(self) -> List[str]:
"""Get list of all created feature column names."""
return self.feature_columns.copy()
def fill_na_values(self, df: pd.DataFrame, strategy: str = 'forward_backward') -> pd.DataFrame:
"""
Fill NA values in lagged and rolling features.
Args:
df: DataFrame with potential NA values
strategy: 'forward_backward', 'zero', 'mean'
Returns:
DataFrame with filled NA values
"""
df = df.copy()
if strategy == 'forward_backward':
# Forward fill first (use previous values)
df = df.fillna(method='ffill')
# Backward fill remaining (beginning of series)
df = df.fillna(method='bfill')
elif strategy == 'zero':
df = df.fillna(0)
elif strategy == 'mean':
df = df.fillna(df.mean())
return df