710 lines
30 KiB
Python
710 lines
30 KiB
Python
# services/forecasting/app/services/prediction_service.py - FIXED SEASON FEATURE
|
|
"""
|
|
Prediction service for loading models and generating predictions
|
|
FIXED: Added missing 'season' feature that matches training service exactly
|
|
"""
|
|
|
|
import structlog
|
|
from typing import Dict, List, Any, Optional
|
|
import asyncio
|
|
import pickle
|
|
import json
|
|
from datetime import datetime, date
|
|
import numpy as np
|
|
import pandas as pd
|
|
import httpx
|
|
from pathlib import Path
|
|
import os
|
|
import joblib
|
|
|
|
from app.core.config import settings
|
|
from shared.monitoring.metrics import MetricsCollector
|
|
from shared.database.base import create_database_manager
|
|
|
|
logger = structlog.get_logger()
|
|
metrics = MetricsCollector("forecasting-service")
|
|
|
|
class PredictionService:
|
|
"""
|
|
Service for loading ML models and generating predictions with dependency injection
|
|
Interfaces with trained Prophet models from the training service
|
|
"""
|
|
|
|
def __init__(self, database_manager=None):
|
|
self.database_manager = database_manager or create_database_manager(settings.DATABASE_URL, "forecasting-service")
|
|
self.model_cache = {}
|
|
self.cache_ttl = 3600 # 1 hour cache
|
|
|
|
async def validate_prediction_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Validate prediction request"""
|
|
try:
|
|
required_fields = ["inventory_product_id", "model_id", "features"]
|
|
missing_fields = [field for field in required_fields if field not in request]
|
|
|
|
if missing_fields:
|
|
return {
|
|
"is_valid": False,
|
|
"errors": [f"Missing required fields: {missing_fields}"],
|
|
"validation_passed": False
|
|
}
|
|
|
|
return {
|
|
"is_valid": True,
|
|
"errors": [],
|
|
"validation_passed": True,
|
|
"validated_fields": list(request.keys())
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error("Validation error", error=str(e))
|
|
return {
|
|
"is_valid": False,
|
|
"errors": [str(e)],
|
|
"validation_passed": False
|
|
}
|
|
|
|
async def predict(self, model_id: str, model_path: str, features: Dict[str, Any],
|
|
confidence_level: float = 0.8) -> Dict[str, float]:
|
|
"""Generate prediction using trained model"""
|
|
|
|
start_time = datetime.now()
|
|
|
|
try:
|
|
logger.info("Generating prediction",
|
|
model_id=model_id,
|
|
features_count=len(features))
|
|
|
|
# Load model
|
|
model = await self._load_model(model_id, model_path)
|
|
|
|
if not model:
|
|
raise ValueError(f"Model {model_id} not found or failed to load")
|
|
|
|
# Prepare features for Prophet model
|
|
prophet_df = self._prepare_prophet_features(features)
|
|
|
|
# Generate prediction
|
|
forecast = model.predict(prophet_df)
|
|
|
|
# Extract prediction values
|
|
prediction_value = float(forecast['yhat'].iloc[0])
|
|
lower_bound = float(forecast['yhat_lower'].iloc[0])
|
|
upper_bound = float(forecast['yhat_upper'].iloc[0])
|
|
|
|
# Calculate confidence interval
|
|
confidence_interval = upper_bound - lower_bound
|
|
|
|
result = {
|
|
"prediction": max(0, prediction_value), # Ensure non-negative
|
|
"lower_bound": max(0, lower_bound),
|
|
"upper_bound": max(0, upper_bound),
|
|
"confidence_interval": confidence_interval,
|
|
"confidence_level": confidence_level
|
|
}
|
|
|
|
# Record metrics
|
|
processing_time = (datetime.now() - start_time).total_seconds()
|
|
# Record metrics with proper registration and error handling
|
|
try:
|
|
# Register metrics if not already registered
|
|
if "prediction_processing_time" not in metrics._histograms:
|
|
metrics.register_histogram(
|
|
"prediction_processing_time",
|
|
"Time taken to process predictions",
|
|
labels=['service', 'model_type']
|
|
)
|
|
|
|
if "predictions_served_total" not in metrics._counters:
|
|
try:
|
|
metrics.register_counter(
|
|
"predictions_served_total",
|
|
"Total number of predictions served",
|
|
labels=['service', 'status']
|
|
)
|
|
except Exception as reg_error:
|
|
# Metric might already exist in global registry
|
|
logger.debug("Counter already exists in registry", error=str(reg_error))
|
|
|
|
# Now record the metrics
|
|
metrics.observe_histogram(
|
|
"prediction_processing_time",
|
|
processing_time,
|
|
labels={'service': 'forecasting-service', 'model_type': 'prophet'}
|
|
)
|
|
metrics.increment_counter(
|
|
"predictions_served_total",
|
|
labels={'service': 'forecasting-service', 'status': 'success'}
|
|
)
|
|
except Exception as metrics_error:
|
|
# Log metrics error but don't fail the prediction
|
|
logger.warning("Failed to record metrics", error=str(metrics_error))
|
|
|
|
logger.info("Prediction generated successfully",
|
|
model_id=model_id,
|
|
prediction=result["prediction"],
|
|
processing_time=processing_time)
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error("Error generating prediction",
|
|
error=str(e),
|
|
model_id=model_id)
|
|
try:
|
|
if "prediction_errors_total" not in metrics._counters:
|
|
metrics.register_counter(
|
|
"prediction_errors_total",
|
|
"Total number of prediction errors",
|
|
labels=['service', 'error_type']
|
|
)
|
|
metrics.increment_counter(
|
|
"prediction_errors_total",
|
|
labels={'service': 'forecasting-service', 'error_type': 'prediction_failed'}
|
|
)
|
|
except Exception:
|
|
pass # Don't fail on metrics errors
|
|
raise
|
|
|
|
async def predict_with_weather_forecast(
|
|
self,
|
|
model_id: str,
|
|
model_path: str,
|
|
features: Dict[str, Any],
|
|
tenant_id: str,
|
|
days: int = 7,
|
|
confidence_level: float = 0.8
|
|
) -> List[Dict[str, float]]:
|
|
"""
|
|
Generate predictions enriched with real weather forecast data
|
|
|
|
This method:
|
|
1. Loads the trained ML model
|
|
2. Fetches real weather forecast from external service
|
|
3. Enriches prediction features with actual forecast data
|
|
4. Generates weather-aware predictions
|
|
|
|
Args:
|
|
model_id: ID of the trained model
|
|
model_path: Path to model file
|
|
features: Base features for prediction
|
|
tenant_id: Tenant ID for weather forecast
|
|
days: Number of days to forecast
|
|
confidence_level: Confidence level for predictions
|
|
|
|
Returns:
|
|
List of predictions with weather-aware adjustments
|
|
"""
|
|
from app.services.data_client import data_client
|
|
|
|
start_time = datetime.now()
|
|
|
|
try:
|
|
logger.info("Generating weather-aware predictions",
|
|
model_id=model_id,
|
|
days=days)
|
|
|
|
# Step 1: Load ML model
|
|
model = await self._load_model(model_id, model_path)
|
|
if not model:
|
|
raise ValueError(f"Model {model_id} not found")
|
|
|
|
# Step 2: Fetch real weather forecast
|
|
latitude = features.get('latitude', 40.4168)
|
|
longitude = features.get('longitude', -3.7038)
|
|
|
|
weather_forecast = await data_client.fetch_weather_forecast(
|
|
tenant_id=tenant_id,
|
|
days=days,
|
|
latitude=latitude,
|
|
longitude=longitude
|
|
)
|
|
|
|
logger.info(f"Fetched weather forecast for {len(weather_forecast)} days",
|
|
tenant_id=tenant_id)
|
|
|
|
# Step 3: Generate predictions for each day with weather data
|
|
predictions = []
|
|
|
|
for day_offset in range(days):
|
|
# Get weather for this specific day
|
|
day_weather = weather_forecast[day_offset] if day_offset < len(weather_forecast) else {}
|
|
|
|
# Enrich features with actual weather forecast
|
|
enriched_features = features.copy()
|
|
enriched_features.update({
|
|
'temperature': day_weather.get('temperature', features.get('temperature', 20.0)),
|
|
'precipitation': day_weather.get('precipitation', features.get('precipitation', 0.0)),
|
|
'humidity': day_weather.get('humidity', features.get('humidity', 60.0)),
|
|
'wind_speed': day_weather.get('wind_speed', features.get('wind_speed', 10.0)),
|
|
'pressure': day_weather.get('pressure', features.get('pressure', 1013.0)),
|
|
'weather_description': day_weather.get('description', 'Clear')
|
|
})
|
|
|
|
# Prepare Prophet dataframe with weather features
|
|
prophet_df = self._prepare_prophet_features(enriched_features)
|
|
|
|
# Generate prediction for this day
|
|
forecast = model.predict(prophet_df)
|
|
|
|
prediction_value = float(forecast['yhat'].iloc[0])
|
|
lower_bound = float(forecast['yhat_lower'].iloc[0])
|
|
upper_bound = float(forecast['yhat_upper'].iloc[0])
|
|
|
|
# Apply weather-based adjustments (business rules)
|
|
adjusted_prediction = self._apply_weather_adjustments(
|
|
prediction_value,
|
|
day_weather,
|
|
features.get('product_category', 'general')
|
|
)
|
|
|
|
predictions.append({
|
|
"date": enriched_features['date'],
|
|
"prediction": max(0, adjusted_prediction),
|
|
"lower_bound": max(0, lower_bound),
|
|
"upper_bound": max(0, upper_bound),
|
|
"confidence_level": confidence_level,
|
|
"weather": {
|
|
"temperature": enriched_features['temperature'],
|
|
"precipitation": enriched_features['precipitation'],
|
|
"description": enriched_features['weather_description']
|
|
}
|
|
})
|
|
|
|
processing_time = (datetime.now() - start_time).total_seconds()
|
|
|
|
logger.info("Weather-aware predictions generated",
|
|
model_id=model_id,
|
|
days=len(predictions),
|
|
processing_time=processing_time)
|
|
|
|
return predictions
|
|
|
|
except Exception as e:
|
|
logger.error("Error generating weather-aware predictions",
|
|
error=str(e),
|
|
model_id=model_id)
|
|
raise
|
|
|
|
def _apply_weather_adjustments(
|
|
self,
|
|
base_prediction: float,
|
|
weather: Dict[str, Any],
|
|
product_category: str
|
|
) -> float:
|
|
"""
|
|
Apply business rules based on weather conditions
|
|
|
|
Adjusts predictions based on real weather forecast
|
|
"""
|
|
adjusted = base_prediction
|
|
temp = weather.get('temperature', 20.0)
|
|
precip = weather.get('precipitation', 0.0)
|
|
|
|
# Temperature-based adjustments
|
|
if product_category == 'ice_cream':
|
|
if temp > 30:
|
|
adjusted *= 1.4 # +40% for very hot days
|
|
elif temp > 25:
|
|
adjusted *= 1.2 # +20% for hot days
|
|
elif temp < 15:
|
|
adjusted *= 0.7 # -30% for cold days
|
|
|
|
elif product_category == 'bread':
|
|
if temp > 30:
|
|
adjusted *= 0.9 # -10% for very hot days
|
|
elif temp < 10:
|
|
adjusted *= 1.1 # +10% for cold days
|
|
|
|
elif product_category == 'coffee':
|
|
if temp < 15:
|
|
adjusted *= 1.2 # +20% for cold days
|
|
elif precip > 5:
|
|
adjusted *= 1.15 # +15% for rainy days
|
|
|
|
# Precipitation-based adjustments
|
|
if precip > 10: # Heavy rain
|
|
if product_category in ['pastry', 'coffee']:
|
|
adjusted *= 1.2 # People stay indoors, buy comfort food
|
|
|
|
return adjusted
|
|
|
|
async def _load_model(self, model_id: str, model_path: str):
|
|
"""Load model from file with improved validation and error handling"""
|
|
|
|
# Enhanced model file validation
|
|
if not await self._validate_model_file(model_path):
|
|
logger.error(f"Model file not valid: {model_path}")
|
|
return None
|
|
|
|
# Check cache first
|
|
if model_id in self.model_cache:
|
|
cached_model, cached_time = self.model_cache[model_id]
|
|
if (datetime.now() - cached_time).seconds < self.cache_ttl:
|
|
return cached_model
|
|
|
|
try:
|
|
if os.path.exists(model_path):
|
|
# Try multiple loading methods for compatibility
|
|
model = await self._load_model_safely(model_path)
|
|
|
|
if model is None:
|
|
logger.error(f"Failed to load model from: {model_path}")
|
|
return None
|
|
|
|
# Cache the model
|
|
self.model_cache[model_id] = (model, datetime.now())
|
|
logger.info(f"Model loaded successfully: {model_path}")
|
|
return model
|
|
else:
|
|
logger.error(f"Model file not found: {model_path}")
|
|
return None
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading model: {e}")
|
|
return None
|
|
|
|
async def _load_model_safely(self, model_path: str):
|
|
"""Safely load model with multiple fallback methods"""
|
|
|
|
# Method 1: Try joblib first (recommended for sklearn/Prophet models)
|
|
try:
|
|
logger.debug(f"Attempting to load model with joblib: {model_path}")
|
|
model = joblib.load(model_path)
|
|
logger.info(f"Model loaded successfully with joblib")
|
|
return model
|
|
except Exception as e:
|
|
logger.warning(f"Joblib loading failed: {e}")
|
|
|
|
# Method 2: Try pickle as fallback
|
|
try:
|
|
logger.debug(f"Attempting to load model with pickle: {model_path}")
|
|
with open(model_path, 'rb') as f:
|
|
model = pickle.load(f)
|
|
logger.info(f"Model loaded successfully with pickle")
|
|
return model
|
|
except Exception as e:
|
|
logger.warning(f"Pickle loading failed: {e}")
|
|
|
|
# Method 3: Try pandas pickle (for Prophet models saved with pandas)
|
|
try:
|
|
logger.debug(f"Attempting to load model with pandas: {model_path}")
|
|
import pandas as pd
|
|
model = pd.read_pickle(model_path)
|
|
logger.info(f"Model loaded successfully with pandas")
|
|
return model
|
|
except Exception as e:
|
|
logger.warning(f"Pandas loading failed: {e}")
|
|
|
|
logger.error(f"All loading methods failed for: {model_path}")
|
|
return None
|
|
|
|
async def _validate_model_file(self, model_path: str) -> bool:
|
|
"""Enhanced model file validation"""
|
|
try:
|
|
if not os.path.exists(model_path):
|
|
logger.error(f"Model file not found: {model_path}")
|
|
return False
|
|
|
|
# Check file size (should be > 1KB for a trained model)
|
|
file_size = os.path.getsize(model_path)
|
|
if file_size < 1024:
|
|
logger.warning(f"Model file too small ({file_size} bytes): {model_path}")
|
|
return False
|
|
|
|
# More comprehensive file format detection
|
|
try:
|
|
with open(model_path, 'rb') as f:
|
|
header = f.read(16) # Read more bytes for better detection
|
|
|
|
# Check for various pickle/joblib signatures
|
|
valid_signatures = [
|
|
b']\x93PICKLE', # Joblib
|
|
b'\x80\x03', # Pickle protocol 3
|
|
b'\x80\x04', # Pickle protocol 4
|
|
b'\x80\x05', # Pickle protocol 5
|
|
b'}\x94', # Newer joblib format
|
|
b'}\x93', # Alternative joblib format
|
|
]
|
|
|
|
is_valid_format = any(header.startswith(sig) for sig in valid_signatures)
|
|
|
|
if not is_valid_format:
|
|
# Log header for debugging but don't fail validation
|
|
logger.warning(f"Unrecognized file header: {header[:8]} for {model_path}")
|
|
logger.info("Proceeding with loading attempt despite unrecognized header")
|
|
# Return True to allow loading attempt - some valid files may have different headers
|
|
return True
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error reading model file header: {e}")
|
|
return False
|
|
|
|
except Exception as e:
|
|
logger.error(f"Model validation error: {e}")
|
|
return False
|
|
|
|
def _prepare_prophet_features(self, features: Dict[str, Any]) -> pd.DataFrame:
|
|
"""Convert features to Prophet-compatible DataFrame - COMPLETE FEATURE MATCHING"""
|
|
|
|
try:
|
|
# Create base DataFrame with required 'ds' column
|
|
df = pd.DataFrame({
|
|
'ds': [pd.to_datetime(features['date'])]
|
|
})
|
|
|
|
# ✅ FIX: Add ALL traffic features that training service uses
|
|
# Core traffic features
|
|
df['traffic_volume'] = float(features.get('traffic_volume', 100.0))
|
|
df['pedestrian_count'] = float(features.get('pedestrian_count', 50.0))
|
|
df['congestion_level'] = float(features.get('congestion_level', 1.0))
|
|
df['average_speed'] = float(features.get('average_speed', 30.0)) # ← MISSING FEATURE!
|
|
|
|
# Weather features
|
|
df['temperature'] = float(features.get('temperature', 15.0))
|
|
df['precipitation'] = float(features.get('precipitation', 0.0))
|
|
df['humidity'] = float(features.get('humidity', 60.0))
|
|
df['wind_speed'] = float(features.get('wind_speed', 5.0))
|
|
df['pressure'] = float(features.get('pressure', 1013.0))
|
|
df['temp_category'] = self._get_temp_category(df['temperature'].iloc[0])
|
|
|
|
# Extract date information for temporal features
|
|
forecast_date = pd.to_datetime(features['date'])
|
|
day_of_week = forecast_date.weekday() # 0=Monday, 6=Sunday
|
|
|
|
# ✅ FIX: Add ALL temporal features (must match training exactly!)
|
|
df['day_of_week'] = int(day_of_week)
|
|
df['day_of_month'] = int(forecast_date.day)
|
|
df['month'] = int(forecast_date.month)
|
|
df['quarter'] = int(forecast_date.quarter)
|
|
df['week_of_year'] = int(forecast_date.isocalendar().week)
|
|
|
|
# ✅ FIX: Add the missing 'season' feature that matches training exactly
|
|
df['season'] = self._get_season(forecast_date.month)
|
|
|
|
# Bakery-specific temporal features
|
|
df['is_weekend'] = int(day_of_week >= 5)
|
|
df['is_monday'] = int(day_of_week == 0)
|
|
df['is_tuesday'] = int(day_of_week == 1)
|
|
df['is_wednesday'] = int(day_of_week == 2)
|
|
df['is_thursday'] = int(day_of_week == 3)
|
|
df['is_friday'] = int(day_of_week == 4)
|
|
df['is_saturday'] = int(day_of_week == 5)
|
|
df['is_sunday'] = int(day_of_week == 6)
|
|
df['is_working_day'] = int(day_of_week < 5) # Working days (Mon-Fri)
|
|
|
|
# Season-based features (match training service)
|
|
df['is_spring'] = int(df['season'].iloc[0] == 2)
|
|
df['is_summer'] = int(df['season'].iloc[0] == 3)
|
|
df['is_autumn'] = int(df['season'].iloc[0] == 4)
|
|
df['is_winter'] = int(df['season'].iloc[0] == 1)
|
|
|
|
# ✅ PERFORMANCE FIX: Build all features at once to avoid DataFrame fragmentation
|
|
|
|
# Extract values once to avoid repeated iloc calls
|
|
temperature = df['temperature'].iloc[0]
|
|
humidity = df['humidity'].iloc[0]
|
|
pressure = df['pressure'].iloc[0]
|
|
wind_speed = df['wind_speed'].iloc[0]
|
|
precipitation = df['precipitation'].iloc[0]
|
|
traffic = df['traffic_volume'].iloc[0]
|
|
pedestrians = df['pedestrian_count'].iloc[0]
|
|
avg_speed = df['average_speed'].iloc[0]
|
|
congestion = df['congestion_level'].iloc[0]
|
|
season = df['season'].iloc[0]
|
|
is_weekend = df['is_weekend'].iloc[0]
|
|
|
|
# Build all new features as a dictionary
|
|
new_features = {
|
|
# Holiday features
|
|
'is_holiday': int(features.get('is_holiday', False)),
|
|
'is_school_holiday': int(features.get('is_school_holiday', False)),
|
|
|
|
# Month-based features
|
|
'is_january': int(forecast_date.month == 1),
|
|
'is_february': int(forecast_date.month == 2),
|
|
'is_march': int(forecast_date.month == 3),
|
|
'is_april': int(forecast_date.month == 4),
|
|
'is_may': int(forecast_date.month == 5),
|
|
'is_june': int(forecast_date.month == 6),
|
|
'is_july': int(forecast_date.month == 7),
|
|
'is_august': int(forecast_date.month == 8),
|
|
'is_september': int(forecast_date.month == 9),
|
|
'is_october': int(forecast_date.month == 10),
|
|
'is_november': int(forecast_date.month == 11),
|
|
'is_december': int(forecast_date.month == 12),
|
|
|
|
# Special day features
|
|
'is_month_start': int(forecast_date.day <= 3),
|
|
'is_month_end': int(forecast_date.day >= 28),
|
|
'is_payday_period': int((forecast_date.day <= 5) or (forecast_date.day >= 25)),
|
|
|
|
# Weather-based derived features
|
|
'temp_squared': temperature ** 2,
|
|
'is_cold_day': int(temperature < 10),
|
|
'is_hot_day': int(temperature > 25),
|
|
'is_pleasant_day': int(10 <= temperature <= 25),
|
|
|
|
# Humidity features
|
|
'humidity_squared': humidity ** 2,
|
|
'is_high_humidity': int(humidity > 70),
|
|
'is_low_humidity': int(humidity < 40),
|
|
|
|
# Pressure features
|
|
'pressure_squared': pressure ** 2,
|
|
'is_high_pressure': int(pressure > 1020),
|
|
'is_low_pressure': int(pressure < 1000),
|
|
|
|
# Wind features
|
|
'wind_squared': wind_speed ** 2,
|
|
'is_windy': int(wind_speed > 15),
|
|
'is_calm': int(wind_speed < 5),
|
|
|
|
# Precipitation features
|
|
'precip_squared': precipitation ** 2,
|
|
'precip_log': float(np.log1p(precipitation)),
|
|
'is_rainy_day': int(precipitation > 0.1),
|
|
'is_very_rainy_day': int(precipitation > 5.0),
|
|
'is_heavy_rain': int(precipitation > 10),
|
|
'rain_intensity': self._get_rain_intensity(precipitation),
|
|
|
|
# Traffic-based features
|
|
'high_traffic': int(traffic > 150) if traffic > 0 else 0,
|
|
'low_traffic': int(traffic < 50) if traffic > 0 else 0,
|
|
# Fix: Use same normalization as training (when std=0, normalized=0.0)
|
|
# Training uses constant 100.0 values, so std=0 and normalized=0.0
|
|
'traffic_normalized': 0.0, # Match training behavior for consistent predictions
|
|
'traffic_squared': traffic ** 2,
|
|
'traffic_log': float(np.log1p(traffic)),
|
|
|
|
# Pedestrian features
|
|
'high_pedestrian_count': int(pedestrians > 100),
|
|
'low_pedestrian_count': int(pedestrians < 25),
|
|
'pedestrian_normalized': float((pedestrians - 50) / 25),
|
|
'pedestrian_squared': pedestrians ** 2,
|
|
'pedestrian_log': float(np.log1p(pedestrians)),
|
|
|
|
# Speed features
|
|
'high_speed': int(avg_speed > 40),
|
|
'low_speed': int(avg_speed < 20),
|
|
'speed_normalized': float((avg_speed - 30) / 10),
|
|
'speed_squared': avg_speed ** 2,
|
|
'speed_log': float(np.log1p(avg_speed)),
|
|
|
|
# Congestion features
|
|
'high_congestion': int(congestion > 3),
|
|
'low_congestion': int(congestion < 2),
|
|
'congestion_squared': congestion ** 2,
|
|
|
|
# Day features
|
|
'is_peak_bakery_day': int(day_of_week in [4, 5, 6]),
|
|
'is_high_demand_month': int(forecast_date.month in [6, 7, 8, 12]),
|
|
'is_warm_season': int(forecast_date.month in [4, 5, 6, 7, 8, 9])
|
|
}
|
|
|
|
# Calculate interaction features
|
|
is_holiday = new_features['is_holiday']
|
|
is_pleasant = new_features['is_pleasant_day']
|
|
is_rainy = new_features['is_rainy_day']
|
|
|
|
interaction_features = {
|
|
# Weekend interactions
|
|
'weekend_temp_interaction': is_weekend * temperature,
|
|
'weekend_pleasant_weather': is_weekend * is_pleasant,
|
|
'weekend_traffic_interaction': is_weekend * traffic,
|
|
|
|
# Holiday interactions
|
|
'holiday_temp_interaction': is_holiday * temperature,
|
|
'holiday_traffic_interaction': is_holiday * traffic,
|
|
|
|
# Season interactions
|
|
'season_temp_interaction': season * temperature,
|
|
'season_traffic_interaction': season * traffic,
|
|
|
|
# Rain-traffic interactions
|
|
'rain_traffic_interaction': is_rainy * traffic,
|
|
'rain_speed_interaction': is_rainy * avg_speed,
|
|
|
|
# Day-weather interactions
|
|
'day_temp_interaction': day_of_week * temperature,
|
|
'month_temp_interaction': forecast_date.month * temperature,
|
|
|
|
# Traffic-speed interactions
|
|
'traffic_speed_interaction': traffic * avg_speed,
|
|
'pedestrian_speed_interaction': pedestrians * avg_speed,
|
|
|
|
# Congestion interactions
|
|
'congestion_temp_interaction': congestion * temperature,
|
|
'congestion_weekend_interaction': congestion * is_weekend
|
|
}
|
|
|
|
# Combine all features
|
|
all_new_features = {**new_features, **interaction_features}
|
|
|
|
# Add all features at once using pd.concat to avoid fragmentation
|
|
new_feature_df = pd.DataFrame([all_new_features])
|
|
df = pd.concat([df, new_feature_df], axis=1)
|
|
|
|
logger.debug("Complete Prophet features prepared",
|
|
feature_count=len(df.columns),
|
|
date=features['date'],
|
|
season=df['season'].iloc[0],
|
|
traffic_volume=df['traffic_volume'].iloc[0],
|
|
average_speed=df['average_speed'].iloc[0],
|
|
pedestrian_count=df['pedestrian_count'].iloc[0])
|
|
|
|
return df
|
|
|
|
except Exception as e:
|
|
logger.error("Error preparing Prophet features", error=str(e))
|
|
raise
|
|
|
|
def _get_season(self, month: int) -> int:
|
|
"""Get season from month (1-4 for Winter, Spring, Summer, Autumn) - MATCH TRAINING"""
|
|
if month in [12, 1, 2]:
|
|
return 1 # Winter
|
|
elif month in [3, 4, 5]:
|
|
return 2 # Spring
|
|
elif month in [6, 7, 8]:
|
|
return 3 # Summer
|
|
else:
|
|
return 4 # Autumn
|
|
|
|
def _is_school_holiday(self, date: datetime) -> bool:
|
|
"""Check if a date is during school holidays - MATCH TRAINING"""
|
|
month = date.month
|
|
|
|
# Approximate Spanish school holiday periods
|
|
if month in [7, 8]: # Summer holidays
|
|
return True
|
|
if month == 12 and date.day >= 20: # Christmas holidays
|
|
return True
|
|
if month == 1 and date.day <= 10: # Christmas holidays continued
|
|
return True
|
|
if month == 4 and date.day <= 15: # Easter holidays (approximate)
|
|
return True
|
|
|
|
return False
|
|
|
|
def _get_temp_category(self, temperature: float) -> int:
|
|
"""Get temperature category (0-3) - MATCH TRAINING"""
|
|
if temperature <= 5:
|
|
return 0 # Very cold
|
|
elif temperature <= 15:
|
|
return 1 # Cold
|
|
elif temperature <= 25:
|
|
return 2 # Mild
|
|
else:
|
|
return 3 # Hot
|
|
|
|
def _get_rain_intensity(self, precipitation: float) -> int:
|
|
"""Get rain intensity category (0-3) - MATCH TRAINING"""
|
|
if precipitation <= 0:
|
|
return 0 # No rain
|
|
elif precipitation <= 2:
|
|
return 1 # Light rain
|
|
elif precipitation <= 10:
|
|
return 2 # Moderate rain
|
|
else:
|
|
return 3 # Heavy rain |