""" POI Context Model Stores Point of Interest detection results and ML features for bakery locations. Used for location-based demand forecasting with contextual features. """ from sqlalchemy import Column, String, DateTime, Float, Index, Integer from sqlalchemy.dialects.postgresql import UUID, JSONB from datetime import datetime, timezone, timedelta import uuid from app.core.database import Base class TenantPOIContext(Base): """ POI (Point of Interest) context for bakery location. Stores detected POIs around bakery and calculated ML features for demand forecasting with location-specific context. """ __tablename__ = "tenant_poi_contexts" id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4) tenant_id = Column(UUID(as_uuid=True), nullable=False, unique=True, index=True) # Location (denormalized for quick reference and spatial queries) latitude = Column(Float, nullable=False) longitude = Column(Float, nullable=False) # POI Detection Results (full raw data) # Structure: { # "schools": { # "pois": [{"osm_id": "...", "name": "...", "lat": ..., "lon": ...}], # "features": {"proximity_score": 3.45, "count_0_100m": 2, ...}, # "count": 5 # }, # "offices": {...}, # ... # } poi_detection_results = Column(JSONB, nullable=False, default=dict) # ML Features (flat structure for easy model ingestion) # Structure: { # "poi_schools_proximity_score": 3.45, # "poi_schools_weighted_proximity_score": 5.18, # "poi_schools_count_0_100m": 2, # "poi_offices_proximity_score": 1.23, # ... # } ml_features = Column(JSONB, nullable=False, default=dict) # Summary Statistics total_pois_detected = Column(Integer, default=0) high_impact_categories = Column(JSONB, default=list) # Categories with significant POI presence relevant_categories = Column(JSONB, default=list) # Categories that passed relevance thresholds # Detection Metadata detection_timestamp = Column(DateTime(timezone=True), nullable=False) detection_source = Column(String(50), default="overpass_api") detection_status = Column(String(20), default="completed") # completed, failed, partial detection_error = Column(String(500), nullable=True) # Error message if detection failed # Data Freshness Strategy # POIs don't change frequently, refresh every 6 months next_refresh_date = Column(DateTime(timezone=True), nullable=True) refresh_interval_days = Column(Integer, default=180) # 6 months default last_refreshed_at = Column(DateTime(timezone=True), nullable=True) # Timestamps created_at = Column(DateTime(timezone=True), default=lambda: datetime.now(timezone.utc)) updated_at = Column( DateTime(timezone=True), default=lambda: datetime.now(timezone.utc), onupdate=lambda: datetime.now(timezone.utc) ) __table_args__ = ( Index('idx_tenant_poi_location', 'latitude', 'longitude'), Index('idx_tenant_poi_refresh', 'next_refresh_date'), Index('idx_tenant_poi_status', 'detection_status'), ) def to_dict(self): """Convert to dictionary for API responses""" return { "id": str(self.id), "tenant_id": str(self.tenant_id), "location": { "latitude": self.latitude, "longitude": self.longitude }, "poi_detection_results": self.poi_detection_results, "ml_features": self.ml_features, "total_pois_detected": self.total_pois_detected, "high_impact_categories": self.high_impact_categories, "relevant_categories": self.relevant_categories, "detection_timestamp": self.detection_timestamp.isoformat() if self.detection_timestamp else None, "detection_source": self.detection_source, "detection_status": self.detection_status, "detection_error": self.detection_error, "next_refresh_date": self.next_refresh_date.isoformat() if self.next_refresh_date else None, "last_refreshed_at": self.last_refreshed_at.isoformat() if self.last_refreshed_at else None, "created_at": self.created_at.isoformat() if self.created_at else None, "updated_at": self.updated_at.isoformat() if self.updated_at else None } def is_stale(self) -> bool: """Check if POI data needs refresh""" if not self.next_refresh_date: return True return datetime.now(timezone.utc) > self.next_refresh_date def calculate_next_refresh(self) -> datetime: """Calculate next refresh date based on interval""" return datetime.now(timezone.utc) + timedelta(days=self.refresh_interval_days) def mark_refreshed(self): """Mark as refreshed and calculate next refresh date""" self.last_refreshed_at = datetime.now(timezone.utc) self.next_refresh_date = self.calculate_next_refresh()