# ================================================================ # TRAINING SERVICE CONFIGURATION # services/training/app/core/config.py # ================================================================ """ Training service configuration ML model training and management """ from shared.config.base import BaseServiceSettings import os class TrainingSettings(BaseServiceSettings): """Training service specific settings""" # Service Identity APP_NAME: str = "Training Service" SERVICE_NAME: str = "training-service" DESCRIPTION: str = "Machine learning model training service" # Database configuration (secure approach - build from components) @property def DATABASE_URL(self) -> str: """Build database URL from secure components""" # Try complete URL first (for backward compatibility) complete_url = os.getenv("TRAINING_DATABASE_URL") if complete_url: return complete_url # Build from components (secure approach) user = os.getenv("TRAINING_DB_USER", "training_user") password = os.getenv("TRAINING_DB_PASSWORD", "training_pass123") host = os.getenv("TRAINING_DB_HOST", "localhost") port = os.getenv("TRAINING_DB_PORT", "5432") name = os.getenv("TRAINING_DB_NAME", "training_db") return f"postgresql+asyncpg://{user}:{password}@{host}:{port}/{name}" # Redis Database (dedicated for training cache) REDIS_DB: int = 1 # ML Model Storage MODEL_BACKUP_ENABLED: bool = os.getenv("MODEL_BACKUP_ENABLED", "true").lower() == "true" MODEL_VERSIONING_ENABLED: bool = os.getenv("MODEL_VERSIONING_ENABLED", "true").lower() == "true" # MinIO Configuration MINIO_ENDPOINT: str = os.getenv("MINIO_ENDPOINT", "minio.bakery-ia.svc.cluster.local:9000") MINIO_ACCESS_KEY: str = os.getenv("MINIO_ACCESS_KEY", "training-service") MINIO_SECRET_KEY: str = os.getenv("MINIO_SECRET_KEY", "training-secret-key") MINIO_USE_SSL: bool = os.getenv("MINIO_USE_SSL", "true").lower() == "true" MINIO_MODEL_BUCKET: str = os.getenv("MINIO_MODEL_BUCKET", "training-models") MINIO_CONSOLE_PORT: str = os.getenv("MINIO_CONSOLE_PORT", "9001") MINIO_API_PORT: str = os.getenv("MINIO_API_PORT", "9000") MINIO_REGION: str = os.getenv("MINIO_REGION", "us-east-1") MINIO_MODEL_LIFECYCLE_DAYS: int = int(os.getenv("MINIO_MODEL_LIFECYCLE_DAYS", "90")) MINIO_CACHE_TTL_SECONDS: int = int(os.getenv("MINIO_CACHE_TTL_SECONDS", "3600")) # Training Configuration MAX_CONCURRENT_TRAINING_JOBS: int = int(os.getenv("MAX_CONCURRENT_TRAINING_JOBS", "3")) # Prophet Specific Configuration PROPHET_HOLIDAYS_PRIOR_SCALE: float = float(os.getenv("PROPHET_HOLIDAYS_PRIOR_SCALE", "10.0")) # Spanish Holiday Integration ENABLE_CUSTOM_HOLIDAYS: bool = os.getenv("ENABLE_CUSTOM_HOLIDAYS", "true").lower() == "true" # Data Processing DATA_PREPROCESSING_ENABLED: bool = True OUTLIER_DETECTION_ENABLED: bool = os.getenv("OUTLIER_DETECTION_ENABLED", "true").lower() == "true" SEASONAL_DECOMPOSITION_ENABLED: bool = os.getenv("SEASONAL_DECOMPOSITION_ENABLED", "true").lower() == "true" # Model Validation CROSS_VALIDATION_ENABLED: bool = os.getenv("CROSS_VALIDATION_ENABLED", "true").lower() == "true" VALIDATION_SPLIT_RATIO: float = float(os.getenv("VALIDATION_SPLIT_RATIO", "0.2")) MIN_MODEL_ACCURACY: float = float(os.getenv("MIN_MODEL_ACCURACY", "0.7")) # Distributed Training (for future scaling) DISTRIBUTED_TRAINING_ENABLED: bool = os.getenv("DISTRIBUTED_TRAINING_ENABLED", "false").lower() == "true" TRAINING_WORKER_COUNT: int = int(os.getenv("TRAINING_WORKER_COUNT", "1")) PROPHET_DAILY_SEASONALITY: bool = True PROPHET_WEEKLY_SEASONALITY: bool = True PROPHET_YEARLY_SEASONALITY: bool = True # Throttling settings for parallel training to prevent heartbeat blocking MAX_CONCURRENT_TRAININGS: int = int(os.getenv("MAX_CONCURRENT_TRAININGS", "3")) settings = TrainingSettings()