""" POI Feature Integrator Integrates POI features into ML training pipeline. Fetches POI context from External service and merges features into training data. """ from typing import Dict, Any, Optional, List import structlog import pandas as pd from shared.clients.external_client import ExternalServiceClient logger = structlog.get_logger() class POIFeatureIntegrator: """ POI feature integration for ML training. Fetches POI context from External service and adds features to training dataframes for location-based demand forecasting. """ def __init__(self, external_client: ExternalServiceClient = None): """ Initialize POI feature integrator. Args: external_client: External service client instance (optional) """ if external_client is None: from app.core.config import settings self.external_client = ExternalServiceClient(settings, "training-service") else: self.external_client = external_client async def fetch_poi_features( self, tenant_id: str, latitude: float, longitude: float, force_refresh: bool = False ) -> Optional[Dict[str, Any]]: """ Fetch POI features for tenant location (optimized for training). First checks if POI context exists. If not, returns None without triggering detection. POI detection should be triggered during tenant registration, not during training. Args: tenant_id: Tenant UUID latitude: Bakery latitude longitude: Bakery longitude force_refresh: Force re-detection (only use if POI context already exists) Returns: Dictionary with POI features or None if not available """ try: # Try to get existing POI context first existing_context = await self.external_client.get_poi_context(tenant_id) if existing_context: poi_context = existing_context.get("poi_context", {}) ml_features = poi_context.get("ml_features", {}) # Check if stale and force_refresh is requested is_stale = existing_context.get("is_stale", False) if not is_stale or not force_refresh: logger.info( "Using existing POI context", tenant_id=tenant_id, is_stale=is_stale, feature_count=len(ml_features) ) return ml_features else: logger.info( "POI context is stale and force_refresh=True, refreshing", tenant_id=tenant_id ) # Only refresh if explicitly requested and context exists detection_result = await self.external_client.detect_poi_for_tenant( tenant_id=tenant_id, latitude=latitude, longitude=longitude, force_refresh=True ) if detection_result: poi_context = detection_result.get("poi_context", {}) ml_features = poi_context.get("ml_features", {}) logger.info( "POI refresh completed", tenant_id=tenant_id, feature_count=len(ml_features) ) return ml_features else: logger.warning( "POI refresh failed, returning existing features", tenant_id=tenant_id ) return ml_features else: logger.info( "No existing POI context found - POI detection should be triggered during tenant registration", tenant_id=tenant_id ) return None except Exception as e: logger.warning( "Error fetching POI features - returning None", tenant_id=tenant_id, error=str(e) ) return None def add_poi_features_to_dataframe( self, df: pd.DataFrame, poi_features: Dict[str, Any] ) -> pd.DataFrame: """ Add POI features to training dataframe. POI features are static (don't vary by date), so they're broadcast to all rows in the dataframe. Args: df: Training dataframe poi_features: Dictionary of POI ML features Returns: Dataframe with POI features added as columns """ if not poi_features: logger.warning("No POI features to add") return df logger.info( "Adding POI features to dataframe", feature_count=len(poi_features), dataframe_rows=len(df) ) # Add each POI feature as a column with constant value for feature_name, feature_value in poi_features.items(): df[feature_name] = feature_value logger.info( "POI features added successfully", new_columns=list(poi_features.keys()) ) return df def get_poi_feature_names(self, poi_features: Dict[str, Any]) -> List[str]: """ Get list of POI feature names for model registration. Args: poi_features: Dictionary of POI ML features Returns: List of feature names """ return list(poi_features.keys()) if poi_features else [] async def check_poi_service_health(self) -> bool: """ Check if POI service is accessible through the external client. Returns: True if service is healthy, False otherwise """ try: # We can test the external service health by attempting to get POI context for a dummy tenant # This will go through the proper authentication and routing dummy_context = await self.external_client.get_poi_context("test-tenant") # If we can successfully make a request (even if it returns None for missing tenant), # it means the service is accessible return True except Exception as e: logger.error( "POI service health check failed", error=str(e) ) return False