""" Enhanced Training API Endpoints with Repository Pattern Updated to use repository pattern with dependency injection and improved error handling """ from fastapi import APIRouter, Depends, HTTPException, status, BackgroundTasks, Request from fastapi import Query, Path from typing import List, Optional, Dict, Any import structlog from datetime import datetime, timezone import uuid from app.services.training_service import EnhancedTrainingService from app.schemas.training import ( TrainingJobRequest, SingleProductTrainingRequest, TrainingJobResponse ) from app.services.messaging import ( publish_job_progress, publish_data_validation_started, publish_data_validation_completed, publish_job_step_completed, publish_job_completed, publish_job_failed, publish_job_started ) from shared.auth.decorators import require_admin_role, get_current_user_dep from shared.database.base import create_database_manager from shared.monitoring.decorators import track_execution_time from shared.monitoring.metrics import get_metrics_collector from app.core.config import settings logger = structlog.get_logger() router = APIRouter(tags=["enhanced-training"]) def get_enhanced_training_service(): """Dependency injection for EnhancedTrainingService""" database_manager = create_database_manager(settings.DATABASE_URL, "training-service") return EnhancedTrainingService(database_manager) @router.post("/tenants/{tenant_id}/training/jobs", response_model=TrainingJobResponse) @track_execution_time("enhanced_training_job_duration_seconds", "training-service") async def start_enhanced_training_job( request: TrainingJobRequest, tenant_id: str = Path(..., description="Tenant ID"), background_tasks: BackgroundTasks = BackgroundTasks(), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Start a new enhanced training job for all tenant products using repository pattern. 🚀 ENHANCED IMMEDIATE RESPONSE PATTERN: 1. Validate request with enhanced validation 2. Create job record using repository pattern 3. Return 200 with enhanced job details 4. Execute enhanced training in background with repository tracking Enhanced features: - Repository pattern for data access - Enhanced error handling and logging - Metrics tracking and monitoring - Transactional operations """ metrics = get_metrics_collector(request_obj) try: # Generate enhanced job ID job_id = f"enhanced_training_{tenant_id}_{uuid.uuid4().hex[:8]}" logger.info("Creating enhanced training job using repository pattern", job_id=job_id, tenant_id=tenant_id) # Record job creation metrics if metrics: metrics.increment_counter("enhanced_training_jobs_created_total") # Add enhanced background task background_tasks.add_task( execute_enhanced_training_job_background, tenant_id=tenant_id, job_id=job_id, bakery_location=(40.4168, -3.7038), requested_start=request.start_date, requested_end=request.end_date ) # Return enhanced immediate success response response_data = { "job_id": job_id, "tenant_id": tenant_id, "status": "pending", "message": "Enhanced training job started successfully using repository pattern", "created_at": datetime.now(timezone.utc), "estimated_duration_minutes": 18, "training_results": { "total_products": 0, # Will be updated during processing "successful_trainings": 0, "failed_trainings": 0, "products": [], "overall_training_time_seconds": 0.0 }, "data_summary": None, "completed_at": None, "error_details": None, "processing_metadata": { "background_task": True, "async_execution": True, "enhanced_features": True, "repository_pattern": True, "dependency_injection": True } } logger.info("Enhanced training job queued successfully", job_id=job_id, features=["repository-pattern", "dependency-injection", "enhanced-tracking"]) return TrainingJobResponse(**response_data) except HTTPException: # Re-raise HTTP exceptions as-is raise except ValueError as e: if metrics: metrics.increment_counter("enhanced_training_validation_errors_total") logger.error("Enhanced training job validation error", error=str(e), tenant_id=tenant_id) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=str(e) ) except Exception as e: if metrics: metrics.increment_counter("enhanced_training_job_errors_total") logger.error("Failed to queue enhanced training job", error=str(e), tenant_id=tenant_id) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Failed to start enhanced training job" ) async def execute_enhanced_training_job_background( tenant_id: str, job_id: str, bakery_location: tuple, requested_start: Optional[datetime] = None, requested_end: Optional[datetime] = None ): """ Enhanced background task that executes the training job using repository pattern. 🔧 ENHANCED FEATURES: - Repository pattern for all data operations - Enhanced error handling with structured logging - Transactional operations for data consistency - Comprehensive metrics tracking - Database connection pooling - Enhanced progress reporting """ logger.info("Enhanced background training job started", job_id=job_id, tenant_id=tenant_id, features=["repository-pattern", "enhanced-tracking"]) # Get enhanced training service with dependency injection database_manager = create_database_manager(settings.DATABASE_URL, "training-service") enhanced_training_service = EnhancedTrainingService(database_manager) try: # Create initial training log entry first await enhanced_training_service._update_job_status_repository( job_id=job_id, status="pending", progress=0, current_step="Starting enhanced training job", tenant_id=tenant_id ) # Publish job started event await publish_job_started(job_id, tenant_id, { "enhanced_features": True, "repository_pattern": True, "job_type": "enhanced_training" }) training_config = { "job_id": job_id, "tenant_id": tenant_id, "bakery_location": { "latitude": bakery_location[0], "longitude": bakery_location[1] }, "requested_start": requested_start.isoformat() if requested_start else None, "requested_end": requested_end.isoformat() if requested_end else None, "estimated_duration_minutes": 18, "background_execution": True, "enhanced_features": True, "repository_pattern": True, "api_version": "enhanced_v1" } # Update job status using repository pattern await enhanced_training_service._update_job_status_repository( job_id=job_id, status="running", progress=0, current_step="Initializing enhanced training pipeline", tenant_id=tenant_id ) # Execute the enhanced training pipeline with repository pattern result = await enhanced_training_service.start_training_job( tenant_id=tenant_id, job_id=job_id, bakery_location=bakery_location, requested_start=requested_start, requested_end=requested_end ) # Update final status using repository pattern await enhanced_training_service._update_job_status_repository( job_id=job_id, status="completed", progress=100, current_step="Enhanced training completed successfully", results=result, tenant_id=tenant_id ) # Publish enhanced completion event await publish_job_completed( job_id=job_id, tenant_id=tenant_id, results={ **result, "enhanced_features": True, "repository_integration": True } ) logger.info("Enhanced background training job completed successfully", job_id=job_id, models_created=result.get('products_trained', 0), features=["repository-pattern", "enhanced-tracking"]) except Exception as training_error: logger.error("Enhanced training pipeline failed", job_id=job_id, error=str(training_error)) try: await enhanced_training_service._update_job_status_repository( job_id=job_id, status="failed", progress=0, current_step="Enhanced training failed", error_message=str(training_error), tenant_id=tenant_id ) except Exception as status_error: logger.error("Failed to update job status after training error", job_id=job_id, status_error=str(status_error)) # Publish enhanced failure event await publish_job_failed( job_id=job_id, tenant_id=tenant_id, error=str(training_error), metadata={ "enhanced_features": True, "repository_pattern": True, "error_type": type(training_error).__name__ } ) except Exception as background_error: logger.error("Critical error in enhanced background training job", job_id=job_id, error=str(background_error)) finally: logger.info("Enhanced background training job cleanup completed", job_id=job_id) @router.post("/tenants/{tenant_id}/training/products/{inventory_product_id}", response_model=TrainingJobResponse) @track_execution_time("enhanced_single_product_training_duration_seconds", "training-service") async def start_enhanced_single_product_training( request: SingleProductTrainingRequest, tenant_id: str = Path(..., description="Tenant ID"), inventory_product_id: str = Path(..., description="Inventory product UUID"), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Start enhanced training for a single product using repository pattern. Enhanced features: - Repository pattern for data access - Enhanced error handling and validation - Metrics tracking - Transactional operations """ metrics = get_metrics_collector(request_obj) try: logger.info("Starting enhanced single product training", inventory_product_id=inventory_product_id, tenant_id=tenant_id) # Record metrics if metrics: metrics.increment_counter("enhanced_single_product_training_total") # Generate enhanced job ID job_id = f"enhanced_single_{tenant_id}_{inventory_product_id}_{uuid.uuid4().hex[:8]}" # Delegate to enhanced training service (single product method to be implemented) result = await enhanced_training_service.start_single_product_training( tenant_id=tenant_id, inventory_product_id=inventory_product_id, job_id=job_id, bakery_location=request.bakery_location or (40.4168, -3.7038) ) if metrics: metrics.increment_counter("enhanced_single_product_training_success_total") logger.info("Enhanced single product training completed", inventory_product_id=inventory_product_id, job_id=job_id) return TrainingJobResponse(**result) except ValueError as e: if metrics: metrics.increment_counter("enhanced_single_product_validation_errors_total") logger.error("Enhanced single product training validation error", error=str(e), inventory_product_id=inventory_product_id) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=str(e) ) except Exception as e: if metrics: metrics.increment_counter("enhanced_single_product_training_errors_total") logger.error("Enhanced single product training failed", error=str(e), inventory_product_id=inventory_product_id) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Enhanced single product training failed" ) @router.get("/tenants/{tenant_id}/training/jobs/{job_id}/status") @track_execution_time("enhanced_job_status_duration_seconds", "training-service") async def get_enhanced_training_job_status( tenant_id: str = Path(..., description="Tenant ID"), job_id: str = Path(..., description="Job ID"), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Get enhanced training job status using repository pattern. """ metrics = get_metrics_collector(request_obj) try: # Get status using enhanced service status_info = await enhanced_training_service.get_training_status(job_id) if not status_info or status_info.get("error"): raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Training job not found" ) if metrics: metrics.increment_counter("enhanced_status_requests_total") return { **status_info, "enhanced_features": True, "repository_integration": True } except HTTPException: raise except Exception as e: if metrics: metrics.increment_counter("enhanced_status_errors_total") logger.error("Failed to get enhanced training status", job_id=job_id, error=str(e)) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Failed to get training status" ) @router.get("/tenants/{tenant_id}/models") @track_execution_time("enhanced_models_list_duration_seconds", "training-service") async def get_enhanced_tenant_models( tenant_id: str = Path(..., description="Tenant ID"), active_only: bool = Query(True, description="Return only active models"), skip: int = Query(0, description="Number of models to skip"), limit: int = Query(100, description="Number of models to return"), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Get tenant models using enhanced repository pattern. """ metrics = get_metrics_collector(request_obj) try: # Get models using enhanced service models = await enhanced_training_service.get_tenant_models( tenant_id=tenant_id, active_only=active_only, skip=skip, limit=limit ) if metrics: metrics.increment_counter("enhanced_models_requests_total") return { "tenant_id": tenant_id, "models": models, "total_returned": len(models), "active_only": active_only, "pagination": { "skip": skip, "limit": limit }, "enhanced_features": True, "repository_integration": True } except Exception as e: if metrics: metrics.increment_counter("enhanced_models_errors_total") logger.error("Failed to get enhanced tenant models", tenant_id=tenant_id, error=str(e)) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Failed to get tenant models" ) @router.get("/tenants/{tenant_id}/models/{model_id}/performance") @track_execution_time("enhanced_model_performance_duration_seconds", "training-service") async def get_enhanced_model_performance( tenant_id: str = Path(..., description="Tenant ID"), model_id: str = Path(..., description="Model ID"), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Get enhanced model performance metrics using repository pattern. """ metrics = get_metrics_collector(request_obj) try: # Get performance using enhanced service performance = await enhanced_training_service.get_model_performance(model_id) if not performance: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model performance not found" ) if metrics: metrics.increment_counter("enhanced_performance_requests_total") return { **performance, "enhanced_features": True, "repository_integration": True } except HTTPException: raise except Exception as e: if metrics: metrics.increment_counter("enhanced_performance_errors_total") logger.error("Failed to get enhanced model performance", model_id=model_id, error=str(e)) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Failed to get model performance" ) @router.get("/tenants/{tenant_id}/statistics") @track_execution_time("enhanced_tenant_statistics_duration_seconds", "training-service") async def get_enhanced_tenant_statistics( tenant_id: str = Path(..., description="Tenant ID"), request_obj: Request = None, enhanced_training_service: EnhancedTrainingService = Depends(get_enhanced_training_service) ): """ Get comprehensive enhanced tenant statistics using repository pattern. """ metrics = get_metrics_collector(request_obj) try: # Get statistics using enhanced service statistics = await enhanced_training_service.get_tenant_statistics(tenant_id) if statistics.get("error"): raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=statistics["error"] ) if metrics: metrics.increment_counter("enhanced_statistics_requests_total") return { **statistics, "enhanced_features": True, "repository_integration": True } except HTTPException: raise except Exception as e: if metrics: metrics.increment_counter("enhanced_statistics_errors_total") logger.error("Failed to get enhanced tenant statistics", tenant_id=tenant_id, error=str(e)) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Failed to get tenant statistics" ) @router.get("/health") async def enhanced_health_check(): """ Enhanced health check endpoint for the training service. """ return { "status": "healthy", "service": "enhanced-training-service", "version": "2.0.0", "features": [ "repository-pattern", "dependency-injection", "enhanced-error-handling", "metrics-tracking", "transactional-operations" ], "timestamp": datetime.now().isoformat() }