# services/inventory/app/api/classification.py """ Product Classification API Endpoints AI-powered product classification for onboarding automation """ from fastapi import APIRouter, Depends, HTTPException, Path from typing import List, Dict, Any, Optional from uuid import UUID, uuid4 from pydantic import BaseModel, Field import structlog from app.services.product_classifier import ProductClassifierService, get_product_classifier from shared.auth.decorators import get_current_user_dep router = APIRouter(tags=["classification"]) logger = structlog.get_logger() class ProductClassificationRequest(BaseModel): """Request for single product classification""" product_name: str = Field(..., description="Product name to classify") sales_volume: float = Field(None, description="Total sales volume for context") sales_data: Dict[str, Any] = Field(default_factory=dict, description="Additional sales context") class BatchClassificationRequest(BaseModel): """Request for batch product classification""" products: List[ProductClassificationRequest] = Field(..., description="Products to classify") class ProductSuggestionResponse(BaseModel): """Response with product classification suggestion""" suggestion_id: str original_name: str suggested_name: str product_type: str category: str unit_of_measure: str confidence_score: float estimated_shelf_life_days: Optional[int] = None requires_refrigeration: bool = False requires_freezing: bool = False is_seasonal: bool = False suggested_supplier: Optional[str] = None notes: Optional[str] = None class BusinessModelAnalysisResponse(BaseModel): """Response with business model analysis""" model: str # production, retail, hybrid confidence: float ingredient_count: int finished_product_count: int ingredient_ratio: float recommendations: List[str] class BatchClassificationResponse(BaseModel): """Response for batch classification""" suggestions: List[ProductSuggestionResponse] business_model_analysis: BusinessModelAnalysisResponse total_products: int high_confidence_count: int low_confidence_count: int @router.post("/tenants/{tenant_id}/inventory/classify-product", response_model=ProductSuggestionResponse) async def classify_single_product( request: ProductClassificationRequest, tenant_id: UUID = Path(..., description="Tenant ID"), current_user: Dict[str, Any] = Depends(get_current_user_dep), classifier: ProductClassifierService = Depends(get_product_classifier) ): """Classify a single product for inventory creation""" try: # Classify the product suggestion = classifier.classify_product( request.product_name, request.sales_volume ) # Convert to response format response = ProductSuggestionResponse( suggestion_id=str(uuid4()), # Generate unique ID for tracking original_name=suggestion.original_name, suggested_name=suggestion.suggested_name, product_type=suggestion.product_type.value, category=suggestion.category, unit_of_measure=suggestion.unit_of_measure.value, confidence_score=suggestion.confidence_score, estimated_shelf_life_days=suggestion.estimated_shelf_life_days, requires_refrigeration=suggestion.requires_refrigeration, requires_freezing=suggestion.requires_freezing, is_seasonal=suggestion.is_seasonal, suggested_supplier=suggestion.suggested_supplier, notes=suggestion.notes ) logger.info("Classified single product", product=request.product_name, classification=suggestion.product_type.value, confidence=suggestion.confidence_score, tenant_id=tenant_id) return response except Exception as e: logger.error("Failed to classify product", error=str(e), product=request.product_name, tenant_id=tenant_id) raise HTTPException(status_code=500, detail=f"Classification failed: {str(e)}") @router.post("/tenants/{tenant_id}/inventory/classify-products-batch", response_model=BatchClassificationResponse) async def classify_products_batch( request: BatchClassificationRequest, tenant_id: UUID = Path(..., description="Tenant ID"), current_user: Dict[str, Any] = Depends(get_current_user_dep), classifier: ProductClassifierService = Depends(get_product_classifier) ): """Classify multiple products for onboarding automation""" try: if not request.products: raise HTTPException(status_code=400, detail="No products provided for classification") # Extract product names and volumes product_names = [p.product_name for p in request.products] sales_volumes = {p.product_name: p.sales_volume for p in request.products if p.sales_volume} # Classify products in batch suggestions = classifier.classify_products_batch(product_names, sales_volumes) # Convert suggestions to response format suggestion_responses = [] for suggestion in suggestions: suggestion_responses.append(ProductSuggestionResponse( suggestion_id=str(uuid4()), original_name=suggestion.original_name, suggested_name=suggestion.suggested_name, product_type=suggestion.product_type.value, category=suggestion.category, unit_of_measure=suggestion.unit_of_measure.value, confidence_score=suggestion.confidence_score, estimated_shelf_life_days=suggestion.estimated_shelf_life_days, requires_refrigeration=suggestion.requires_refrigeration, requires_freezing=suggestion.requires_freezing, is_seasonal=suggestion.is_seasonal, suggested_supplier=suggestion.suggested_supplier, notes=suggestion.notes )) # Analyze business model with enhanced detection ingredient_count = sum(1 for s in suggestions if s.product_type.value == 'ingredient') finished_count = sum(1 for s in suggestions if s.product_type.value == 'finished_product') semi_finished_count = sum(1 for s in suggestions if 'semi' in s.suggested_name.lower() or 'frozen' in s.suggested_name.lower() or 'pre' in s.suggested_name.lower()) total = len(suggestions) ingredient_ratio = ingredient_count / total if total > 0 else 0 semi_finished_ratio = semi_finished_count / total if total > 0 else 0 # Enhanced business model determination if ingredient_ratio >= 0.7: model = 'individual_bakery' # Full production from raw ingredients elif ingredient_ratio <= 0.2 and semi_finished_ratio >= 0.3: model = 'central_baker_satellite' # Receives semi-finished products from central baker elif ingredient_ratio <= 0.3: model = 'retail_bakery' # Sells finished products from suppliers else: model = 'hybrid_bakery' # Mixed model # Calculate confidence based on clear distinction if model == 'individual_bakery': confidence = min(ingredient_ratio * 1.2, 0.95) elif model == 'central_baker_satellite': confidence = min((semi_finished_ratio + (1 - ingredient_ratio)) / 2 * 1.2, 0.95) else: confidence = max(abs(ingredient_ratio - 0.5) * 2, 0.1) recommendations = { 'individual_bakery': [ 'Set up raw ingredient inventory management', 'Configure recipe cost calculation and production planning', 'Enable supplier relationships for flour, yeast, sugar, etc.', 'Set up full production workflow with proofing and baking schedules', 'Enable waste tracking for overproduction' ], 'central_baker_satellite': [ 'Configure central baker delivery schedules', 'Set up semi-finished product inventory (frozen dough, par-baked items)', 'Enable finish-baking workflow and timing optimization', 'Track freshness and shelf-life for received products', 'Focus on customer demand forecasting for final products' ], 'retail_bakery': [ 'Set up finished product supplier relationships', 'Configure delivery schedule tracking', 'Enable freshness monitoring and expiration management', 'Focus on sales forecasting and customer preferences' ], 'hybrid_bakery': [ 'Configure both ingredient and semi-finished product management', 'Set up flexible production workflows', 'Enable both supplier and central baker relationships', 'Configure multi-tier inventory categories' ] } business_model_analysis = BusinessModelAnalysisResponse( model=model, confidence=confidence, ingredient_count=ingredient_count, finished_product_count=finished_count, ingredient_ratio=ingredient_ratio, recommendations=recommendations.get(model, []) ) # Count confidence levels high_confidence_count = sum(1 for s in suggestions if s.confidence_score >= 0.7) low_confidence_count = sum(1 for s in suggestions if s.confidence_score < 0.6) response = BatchClassificationResponse( suggestions=suggestion_responses, business_model_analysis=business_model_analysis, total_products=len(suggestions), high_confidence_count=high_confidence_count, low_confidence_count=low_confidence_count ) logger.info("Batch classification complete", total_products=len(suggestions), business_model=model, high_confidence=high_confidence_count, low_confidence=low_confidence_count, tenant_id=tenant_id) return response except Exception as e: logger.error("Failed batch classification", error=str(e), products_count=len(request.products), tenant_id=tenant_id) raise HTTPException(status_code=500, detail=f"Batch classification failed: {str(e)}")