Commit Graph

16 Commits

Author SHA1 Message Date
Urtzi Alfaro
35f164f0cd Add new infra architecture 2026-01-19 11:55:17 +01:00
Urtzi Alfaro
21d35ea92b Add ci/cd and fix multiple pods issues 2026-01-18 09:02:27 +01:00
Urtzi Alfaro
c68d82ca7f Fix critical bugs and standardize service integrations
Critical Fixes:
- Orchestrator: Add missing OrchestrationStatus import (fixes HTTP 500 during demo clone)
- Procurement: Migrate from custom cache utils to shared Redis utils
- Suppliers: Use proper Settings for Redis configuration with TLS/auth
- Recipes/Suppliers clients: Fix endpoint paths (remove duplicate path segments)
- Procurement client: Use suppliers service directly for supplier details

Details:
1. services/orchestrator/app/api/internal_demo.py:
   - Added OrchestrationStatus import to fix cloning error
   - This was causing HTTP 500 errors during demo session cloning

2. services/procurement/app/api/purchase_orders.py + service:
   - Replaced app.utils.cache with shared.redis_utils
   - Standardizes caching across all services
   - Removed custom cache utilities (deleted app/utils/cache.py)

3. services/suppliers/app/consumers/alert_event_consumer.py:
   - Use Settings().REDIS_URL instead of os.getenv
   - Ensures proper Redis connection with TLS and authentication

4. shared/clients/recipes_client.py:
   - Fixed endpoint paths: recipes/recipes/{id} → recipes/{id}
   - Applied to all recipe methods (by_id, by_products, instructions, yield)

5. shared/clients/suppliers_client.py:
   - Fixed endpoint path: suppliers/suppliers/{id} → suppliers/{id}

6. shared/clients/procurement_client.py:
   - get_supplier_by_id now uses SuppliersServiceClient directly
   - Removes incorrect call to procurement service for supplier details

Impact:
- Demo session cloning now works without orchestrator errors 
- Consistent Redis usage across all services
- Correct service boundaries (suppliers data from suppliers service)
- Clean client endpoint paths

🤖 Generated with Claude Code (https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-16 11:33:22 +01:00
Urtzi Alfaro
ff830a3415 demo seed change 2025-12-13 23:57:54 +01:00
Urtzi Alfaro
508f4569b9 Fix and UI imporvements 2025-12-09 10:21:41 +01:00
Urtzi Alfaro
667e6e0404 New alert service 2025-12-05 20:07:01 +01:00
Urtzi Alfaro
972db02f6d New enterprise feature 2025-11-30 09:12:40 +01:00
Urtzi Alfaro
e902419b6e New alert system and panel de control page 2025-11-27 15:52:40 +01:00
Urtzi Alfaro
5783c7ed05 Add POI feature and imporve the overall backend implementation 2025-11-12 15:34:10 +01:00
Claude
9d284cae46 refactor: Convert internal services to structured JSON reasoning
Convert pipe-separated reasoning codes to structured JSON format for:
- Safety stock calculator (statistical calculations, errors)
- Price forecaster (procurement recommendations, volatility)
- Order optimization (EOQ, tier pricing)

This enables i18n translation of internal calculation reasoning
and provides structured data for frontend AI insights display.

Benefits:
- Consistent with PO/Batch reasoning_data format
- Frontend can translate using same i18n infrastructure
- Structured parameters enable rich UI visualization
- No legacy string parsing needed

Changes:
- safety_stock_calculator.py: Replace reasoning str with reasoning_data dict
- price_forecaster.py: Convert recommendation reasoning to structured format
- optimization.py: Update EOQ and tier pricing to use reasoning_data

Part of complete i18n implementation for AI insights.
2025-11-07 19:22:02 +00:00
Claude
be8cb20b18 fix: Replace all remaining hardcoded English reasoning with structured codes
This commit removes the last hardcoded English text from reasoning fields
across all backend services, completing the i18n implementation.

Changes by service:

Safety Stock Calculator (safety_stock_calculator.py):
- CALC:STATISTICAL_Z_SCORE - Statistical calculation with Z-score
- CALC:ADVANCED_VARIABILITY - Advanced formula with demand and lead time variability
- CALC:FIXED_PERCENTAGE - Fixed percentage of lead time demand
- All calculation methods now use structured codes with pipe-separated parameters

Price Forecaster (price_forecaster.py):
- PRICE_FORECAST:DECREASE_EXPECTED - Price expected to decrease
- PRICE_FORECAST:INCREASE_EXPECTED - Price expected to increase
- PRICE_FORECAST:HIGH_VOLATILITY - High price volatility detected
- PRICE_FORECAST:BELOW_AVERAGE - Current price below average (buy opportunity)
- PRICE_FORECAST:STABLE - Price stable, normal schedule
- All forecasts include relevant parameters (change_pct, days, etc.)

Optimization Utils (shared/utils/optimization.py):
- EOQ:BASE - Economic Order Quantity base calculation
- EOQ:MOQ_APPLIED - Minimum order quantity constraint applied
- EOQ:MAX_APPLIED - Maximum order quantity constraint applied
- TIER_PRICING:CURRENT_TIER - Current tier pricing
- TIER_PRICING:UPGRADED - Upgraded to higher tier for savings
- All optimizations include calculation parameters

Format: All codes use pattern "CATEGORY:TYPE|param1=value|param2=value"
This allows frontend to parse and translate with parameters while maintaining
technical accuracy for logging and debugging.

Frontend can now translate ALL reasoning codes across the entire system.
2025-11-07 19:00:00 +00:00
Claude
ed7db4d4f2 feat: Complete backend i18n implementation with error codes and demo data
Demo Seed Scripts:
- Updated seed_demo_purchase_orders.py to use structured reasoning_data
  * Imports create_po_reasoning_low_stock and create_po_reasoning_supplier_contract
  * Generates reasoning_data with product names, stock levels, and consequences
  * Removed deprecated reasoning/consequence TEXT fields
- Updated seed_demo_batches.py to use structured reasoning_data
  * Imports create_batch_reasoning_forecast_demand and create_batch_reasoning_regular_schedule
  * Generates intelligent reasoning based on batch priority and AI assistance
  * Adds reasoning_data to all production batches

Backend Services - Error Code Implementation:
- Updated safety_stock_calculator.py with error codes
  * Replaced "Lead time or demand std dev is zero or negative" with ERROR:LEAD_TIME_INVALID
  * Replaced "Insufficient historical demand data" with ERROR:INSUFFICIENT_DATA
- Updated replenishment_planning_service.py with error codes
  * Replaced "Insufficient data for safety stock calculation" with ERROR:INSUFFICIENT_DATA
  * Frontend can now translate error codes using i18n

Demo data will now display with translatable reasoning in EN/ES/EU languages.
Backend services return error codes that frontend translates for user's language.
2025-11-07 18:40:44 +00:00
Claude
ddc4928d78 feat: Implement structured reasoning_data generation for i18n support
Implemented proper reasoning data generation for purchase orders and
production batches to enable multilingual dashboard support.

Backend Strategy:
- Generate structured JSON with type codes and parameters
- Store only reasoning_data (JSONB), not hardcoded text
- Frontend will translate using i18n libraries

Changes:
1. Created shared/schemas/reasoning_types.py
   - Defined reasoning types for POs and batches
   - Created helper functions for common reasoning patterns
   - Supports multiple reasoning types (low_stock, forecast_demand, etc.)

2. Production Service (services/production/app/services/production_service.py)
   - Generate reasoning_data when creating batches from forecast
   - Include parameters: product_name, predicted_demand, current_stock, etc.
   - Structure supports frontend i18n interpolation

3. Procurement Service (services/procurement/app/services/procurement_service.py)
   - Implemented actual PO creation (was placeholder before!)
   - Groups requirements by supplier
   - Generates reasoning_data based on context (low_stock vs forecast)
   - Creates PO items automatically

Example reasoning_data:
{
  "type": "low_stock_detection",
  "parameters": {
    "supplier_name": "Harinas del Norte",
    "product_names": ["Flour Type 55", "Flour Type 45"],
    "days_until_stockout": 3,
    "current_stock": 45.5,
    "required_stock": 200
  },
  "consequence": {
    "type": "stockout_risk",
    "severity": "high",
    "impact_days": 3
  }
}

Frontend will translate:
- EN: "Low stock detected for Harinas del Norte. Stock runs out in 3 days."
- ES: "Stock bajo detectado para Harinas del Norte. Se agota en 3 días."
- CA: "Estoc baix detectat per Harinas del Norte. S'esgota en 3 dies."

Next steps:
- Remove TEXT fields (reasoning, consequence) from models
- Update dashboard service to use reasoning_data
- Create frontend i18n translation keys
- Update dashboard components to translate dynamically
2025-11-07 18:16:44 +00:00
Urtzi Alfaro
0220da1725 Improve the frontend 4 2025-11-01 21:35:03 +01:00
Urtzi Alfaro
f44d235c6d Add user delete process 2 2025-10-31 18:57:58 +01:00
Urtzi Alfaro
63f5c6d512 Improve the frontend 3 2025-10-30 21:08:07 +01:00