Start fixing forecast service API 14

This commit is contained in:
Urtzi Alfaro
2025-07-29 21:08:33 +02:00
parent c1dda203b6
commit f3e8a6dda8
5 changed files with 95 additions and 12 deletions

View File

@@ -72,7 +72,7 @@ async def get_current_weather(
logger.error("Failed to get current weather", error=str(e))
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@router.get("/tenants/{tenant_id}/weather/forecast", response_model=List[WeatherForecastResponse])
@router.post("/tenants/{tenant_id}/weather/forecast", response_model=List[WeatherForecastResponse])
async def get_weather_forecast(
latitude: float = Query(..., description="Latitude"),
longitude: float = Query(..., description="Longitude"),

View File

@@ -17,6 +17,7 @@ import pandas as pd
import httpx
from pathlib import Path
import os
import joblib
from app.core.config import settings
from shared.monitoring.metrics import MetricsCollector
@@ -89,7 +90,11 @@ class PredictionService:
raise
async def _load_model(self, model_id: str, model_path: str):
"""Load model from shared volume using API metadata"""
"""Load model from shared volume using joblib"""
if not await self._validate_model_file(model_path):
logger.error(f"Model file not valid: {model_path}")
return None
# Check cache first
if model_id in self.model_cache:
@@ -98,10 +103,9 @@ class PredictionService:
return cached_model
try:
# Load model directly from shared volume (fast!)
if os.path.exists(model_path):
with open(model_path, 'rb') as f:
model = pickle.load(f)
# ✅ FIX: Use joblib.load instead of pickle.load
model = joblib.load(model_path)
# Cache the model
self.model_cache[model_id] = (model, datetime.now())
@@ -115,6 +119,34 @@ class PredictionService:
logger.error(f"Error loading model: {e}")
return None
async def _validate_model_file(self, model_path: str) -> bool:
"""Validate model file before loading"""
try:
if not os.path.exists(model_path):
logger.error(f"Model file not found: {model_path}")
return False
# Check file size (should be > 1KB for a trained model)
file_size = os.path.getsize(model_path)
if file_size < 1024:
logger.warning(f"Model file too small ({file_size} bytes): {model_path}")
return False
# Try to peek at file header to detect format
with open(model_path, 'rb') as f:
header = f.read(8)
# Check for joblib signature
if header.startswith(b']\x93PICKLE') or header.startswith(b'\x80\x03'):
return True
else:
logger.warning(f"Unrecognized file format: {model_path}")
return False
except Exception as e:
logger.error(f"Model validation error: {e}")
return False
def _prepare_prophet_features(self, features: Dict[str, Any]) -> pd.DataFrame:
"""Convert features to Prophet-compatible DataFrame"""
@@ -136,18 +168,67 @@ class PredictionService:
else:
df[feature] = 0.0
# Add categorical features
df['day_of_week'] = int(features.get('day_of_week', 0))
df['is_weekend'] = int(features.get('is_weekend', False))
# Extract date information for temporal features
forecast_date = pd.to_datetime(features['date'])
day_of_week = forecast_date.weekday() # 0=Monday, 6=Sunday
# Add temporal features (MUST match training service exactly!)
df['day_of_week'] = int(day_of_week)
df['day_of_month'] = int(forecast_date.day)
df['month'] = int(forecast_date.month)
df['quarter'] = int(forecast_date.quarter)
df['week_of_year'] = int(forecast_date.isocalendar().week)
# Bakery-specific temporal features (match training exactly!)
df['is_weekend'] = int(day_of_week >= 5) # Saturday=5, Sunday=6
df['is_monday'] = int(day_of_week == 0) # ✅ FIX: Add missing is_monday
df['is_tuesday'] = int(day_of_week == 1)
df['is_wednesday'] = int(day_of_week == 2)
df['is_thursday'] = int(day_of_week == 3)
df['is_friday'] = int(day_of_week == 4)
df['is_saturday'] = int(day_of_week == 5)
df['is_sunday'] = int(day_of_week == 6)
# Month-based features
df['is_january'] = int(forecast_date.month == 1)
df['is_february'] = int(forecast_date.month == 2)
df['is_march'] = int(forecast_date.month == 3)
df['is_april'] = int(forecast_date.month == 4)
df['is_may'] = int(forecast_date.month == 5)
df['is_june'] = int(forecast_date.month == 6)
df['is_july'] = int(forecast_date.month == 7)
df['is_august'] = int(forecast_date.month == 8)
df['is_september'] = int(forecast_date.month == 9)
df['is_october'] = int(forecast_date.month == 10)
df['is_november'] = int(forecast_date.month == 11)
df['is_december'] = int(forecast_date.month == 12)
# Season-based features
season = ((forecast_date.month % 12) + 3) // 3 # 1=spring, 2=summer, 3=autumn, 4=winter
df['is_spring'] = int(season == 1)
df['is_summer'] = int(season == 2)
df['is_autumn'] = int(season == 3)
df['is_winter'] = int(season == 4)
# Business context features
df['is_holiday'] = int(features.get('is_holiday', False))
# Business type encoding
business_type = features.get('business_type', 'individual')
df['is_central_workshop'] = int(business_type == 'central_workshop')
df['is_individual_bakery'] = int(business_type == 'individual')
# Special day features (these might be in training data)
df['is_month_start'] = int(forecast_date.day <= 3)
df['is_month_end'] = int(forecast_date.day >= 28)
df['is_quarter_start'] = int(forecast_date.month in [1, 4, 7, 10] and forecast_date.day <= 7)
df['is_quarter_end'] = int(forecast_date.month in [3, 6, 9, 12] and forecast_date.day >= 25)
logger.debug("Prepared Prophet features",
features_count=len(df.columns),
date=features['date'])
date=features['date'],
day_of_week=day_of_week,
is_monday=df['is_monday'].iloc[0])
return df

View File

@@ -22,6 +22,7 @@ prophet==1.1.4
scikit-learn==1.3.2
pandas==2.1.4
numpy==1.25.2
joblib==1.3.2
# Messaging
aio-pika==9.3.1

View File

@@ -169,6 +169,7 @@ class TrainedModel(Base):
def to_dict(self):
return {
"id": self.id,
"model_id": self.id,
"tenant_id": self.tenant_id,
"product_name": self.product_name,
"model_type": self.model_type,

View File

@@ -241,9 +241,9 @@ class DataServiceClient(BaseServiceClient):
"""
# Prepare request payload with proper date handling
payload = {
"days": days, # Already in ISO format from calling code
"latitude": latitude or 40.4168, # Default Madrid coordinates
"longitude": longitude or -3.7038
"longitude": longitude or -3.7038,
"days": days # Already in ISO format from calling code
}
logger.info(f"Weather request payload: {payload}", tenant_id=tenant_id)