Fix procurement data structure and add price trends
Fixed critical structural issues in procurement fixture:
1. **Removed duplicate nested items** (32 items):
- Previous enhancement script incorrectly added 'items' arrays
inside purchase_orders
- Procurement service uses separate purchase_order_items table
- Removed all nested 'items' to match PurchaseOrderItem model
2. **Added price trends to existing PO items** (10 items updated):
- Harina T55: +8% (€0.85 → €0.92)
- Harina T65: +6% (€0.95 → €1.01)
- Mantequilla: +12% (€6.50 → €7.28) - highest increase
- Leche: -3% (€0.95 → €0.92) - seasonal surplus
- Levadura: +4% (€4.20 → €4.37)
- Azúcar: +2% (€1.10 → €1.12) - stable
3. **Recalculated PO totals** based on updated item prices
This enables procurement AI insights:
- Price trend analysis and alerts
- Supplier performance comparison
- Cost optimization recommendations
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
208
shared/demo/fixtures/professional/fix_procurement_structure.py
Normal file
208
shared/demo/fixtures/professional/fix_procurement_structure.py
Normal file
@@ -0,0 +1,208 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Fix Procurement Data Structure and Add Realistic Price Trends
|
||||
|
||||
Issues to fix:
|
||||
1. Remove nested 'items' arrays from purchase_orders (wrong structure)
|
||||
2. Use existing purchase_order_items table structure at root level
|
||||
3. Add price trends to existing PO items
|
||||
4. Align PO items with actual inventory stock conditions
|
||||
"""
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
# Set seed for reproducibility
|
||||
random.seed(42)
|
||||
|
||||
# Price trend data (realistic price movements over time)
|
||||
# These match the 6 ingredients we track in inventory
|
||||
PRICE_TRENDS = {
|
||||
"10000000-0000-0000-0000-000000000001": { # Harina T55
|
||||
"name": "Harina de Trigo T55",
|
||||
"base_price": 0.85,
|
||||
"current_price": 0.92, # +8% over 90 days
|
||||
"trend": 0.08
|
||||
},
|
||||
"10000000-0000-0000-0000-000000000002": { # Harina T65
|
||||
"name": "Harina de Trigo T65",
|
||||
"base_price": 0.95,
|
||||
"current_price": 1.01, # +6%
|
||||
"trend": 0.06
|
||||
},
|
||||
"10000000-0000-0000-0000-000000000011": { # Mantequilla
|
||||
"name": "Mantequilla sin Sal",
|
||||
"base_price": 6.50,
|
||||
"current_price": 7.28, # +12% (highest increase)
|
||||
"trend": 0.12
|
||||
},
|
||||
"10000000-0000-0000-0000-000000000012": { # Leche
|
||||
"name": "Leche Entera Fresca",
|
||||
"base_price": 0.95,
|
||||
"current_price": 0.92, # -3% (seasonal surplus)
|
||||
"trend": -0.03
|
||||
},
|
||||
"10000000-0000-0000-0000-000000000021": { # Levadura
|
||||
"name": "Levadura Fresca",
|
||||
"base_price": 4.20,
|
||||
"current_price": 4.37, # +4%
|
||||
"trend": 0.04
|
||||
},
|
||||
"10000000-0000-0000-0000-000000000032": { # Azúcar
|
||||
"name": "Azúcar Blanco",
|
||||
"base_price": 1.10,
|
||||
"current_price": 1.12, # +2% (stable)
|
||||
"trend": 0.02
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def calculate_price_for_date(ingredient_id: str, days_ago: int) -> float:
|
||||
"""Calculate historical price based on trend"""
|
||||
if ingredient_id not in PRICE_TRENDS:
|
||||
return None
|
||||
|
||||
trend_data = PRICE_TRENDS[ingredient_id]
|
||||
base = trend_data["base_price"]
|
||||
total_trend = trend_data["trend"]
|
||||
|
||||
# Apply trend proportionally
|
||||
# If 90 days trend is +8%, then 45 days ago had +4% from base
|
||||
trend_factor = 1 + (total_trend * (90 - days_ago) / 90)
|
||||
|
||||
# Add small variability (±2%)
|
||||
variability = random.uniform(-0.02, 0.02)
|
||||
|
||||
price = base * trend_factor * (1 + variability)
|
||||
return round(price, 2)
|
||||
|
||||
|
||||
def parse_days_ago(date_str: str) -> int:
|
||||
"""Parse BASE_TS marker to extract days ago"""
|
||||
if not date_str or 'BASE_TS' not in date_str:
|
||||
return 30
|
||||
|
||||
if '- ' in date_str:
|
||||
parts = date_str.split('- ')[1].strip()
|
||||
if 'd' in parts:
|
||||
try:
|
||||
return int(parts.split('d')[0])
|
||||
except:
|
||||
pass
|
||||
elif 'h' in parts:
|
||||
return 0 # Same day
|
||||
elif '+ ' in date_str:
|
||||
return 0 # Future order, use current price
|
||||
|
||||
return 0 # BASE_TS alone = today
|
||||
|
||||
|
||||
def main():
|
||||
fixture_path = Path(__file__).parent / "07-procurement.json"
|
||||
|
||||
print("🔧 Fixing Procurement Data Structure...")
|
||||
print()
|
||||
|
||||
# Load existing data
|
||||
with open(fixture_path, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
|
||||
purchase_orders = data.get('purchase_orders', [])
|
||||
po_items = data.get('purchase_order_items', [])
|
||||
|
||||
print(f"📦 Found {len(purchase_orders)} purchase orders")
|
||||
print(f"📋 Found {len(po_items)} PO items")
|
||||
print()
|
||||
|
||||
# Step 1: Remove nested 'items' arrays from POs (wrong structure)
|
||||
items_removed = 0
|
||||
for po in purchase_orders:
|
||||
if 'items' in po:
|
||||
items_removed += len(po['items'])
|
||||
del po['items']
|
||||
|
||||
if items_removed > 0:
|
||||
print(f"✓ Removed {items_removed} nested items arrays (wrong structure)")
|
||||
print()
|
||||
|
||||
# Step 2: Update existing PO items with realistic price trends
|
||||
items_updated = 0
|
||||
|
||||
for item in po_items:
|
||||
ingredient_id = item.get('inventory_product_id')
|
||||
|
||||
if ingredient_id in PRICE_TRENDS:
|
||||
# Find the PO to get order date
|
||||
po_id = item.get('purchase_order_id')
|
||||
po = next((p for p in purchase_orders if p['id'] == po_id), None)
|
||||
|
||||
if po:
|
||||
order_date = po.get('order_date', 'BASE_TS')
|
||||
days_ago = parse_days_ago(order_date)
|
||||
|
||||
# Calculate price for that date
|
||||
historical_price = calculate_price_for_date(ingredient_id, days_ago)
|
||||
|
||||
if historical_price:
|
||||
# Update item with historical price
|
||||
ordered_qty = float(item.get('ordered_quantity', 0))
|
||||
item['unit_price'] = historical_price
|
||||
item['line_total'] = round(ordered_qty * historical_price, 2)
|
||||
|
||||
items_updated += 1
|
||||
|
||||
print(f"✓ Updated {items_updated} PO items with price trends")
|
||||
print()
|
||||
|
||||
# Step 3: Recalculate PO totals based on updated items
|
||||
for po in purchase_orders:
|
||||
po_id = po['id']
|
||||
po_items_for_this_po = [item for item in po_items if item.get('purchase_order_id') == po_id]
|
||||
|
||||
if po_items_for_this_po:
|
||||
# Calculate subtotal from items
|
||||
subtotal = sum(float(item.get('line_total', 0)) for item in po_items_for_this_po)
|
||||
tax_rate = 0.21 # 21% IVA in Spain
|
||||
tax = subtotal * tax_rate
|
||||
|
||||
# Keep existing shipping cost or default
|
||||
shipping = float(po.get('shipping_cost', 15.0 if subtotal < 500 else 20.0))
|
||||
discount = float(po.get('discount_amount', 0.0))
|
||||
|
||||
total = subtotal + tax + shipping - discount
|
||||
|
||||
po['subtotal'] = round(subtotal, 2)
|
||||
po['tax_amount'] = round(tax, 2)
|
||||
po['shipping_cost'] = round(shipping, 2)
|
||||
po['discount_amount'] = round(discount, 2)
|
||||
po['total_amount'] = round(total, 2)
|
||||
|
||||
print(f"✓ Recalculated totals for {len(purchase_orders)} purchase orders")
|
||||
print()
|
||||
|
||||
# Save fixed data
|
||||
with open(fixture_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(data, f, indent=2, ensure_ascii=False)
|
||||
|
||||
print("=" * 60)
|
||||
print("✅ PROCUREMENT STRUCTURE FIXED")
|
||||
print("=" * 60)
|
||||
print()
|
||||
print("🎯 Changes Applied:")
|
||||
print(f" • Removed {items_removed} incorrectly nested items")
|
||||
print(f" • Updated {items_updated} PO items with price trends")
|
||||
print(f" • Recalculated {len(purchase_orders)} PO totals")
|
||||
print()
|
||||
print("📊 Price Trends Applied:")
|
||||
for ing_id, data in PRICE_TRENDS.items():
|
||||
direction = "↑" if data["trend"] > 0 else "↓"
|
||||
print(f" {direction} {data['name']}: {data['trend']*100:+.1f}%")
|
||||
print()
|
||||
print("✅ Data structure now matches PurchaseOrderItem model")
|
||||
print("✅ Price trends enable procurement AI insights")
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user