Improve training code 3
This commit is contained in:
@@ -55,16 +55,58 @@ class SingleProductTrainingRequest(BaseModel):
|
||||
weekly_seasonality: bool = Field(True, description="Enable weekly seasonality")
|
||||
yearly_seasonality: bool = Field(True, description="Enable yearly seasonality")
|
||||
|
||||
class DateRangeInfo(BaseModel):
|
||||
"""Schema for date range information"""
|
||||
start: str = Field(..., description="Start date in ISO format")
|
||||
end: str = Field(..., description="End date in ISO format")
|
||||
|
||||
class DataSummary(BaseModel):
|
||||
"""Schema for training data summary"""
|
||||
sales_records: int = Field(..., description="Number of sales records used")
|
||||
weather_records: int = Field(..., description="Number of weather records used")
|
||||
traffic_records: int = Field(..., description="Number of traffic records used")
|
||||
date_range: DateRangeInfo = Field(..., description="Date range of training data")
|
||||
data_sources_used: List[str] = Field(..., description="List of data sources used")
|
||||
constraints_applied: Dict[str, str] = Field(default_factory=dict, description="Constraints applied during data collection")
|
||||
|
||||
class ProductTrainingResult(BaseModel):
|
||||
"""Schema for individual product training results"""
|
||||
product_name: str = Field(..., description="Product name")
|
||||
status: str = Field(..., description="Training status for this product")
|
||||
model_id: Optional[str] = Field(None, description="Trained model identifier")
|
||||
data_points: int = Field(..., description="Number of data points used for training")
|
||||
metrics: Optional[Dict[str, float]] = Field(None, description="Training metrics (MAE, MAPE, etc.)")
|
||||
training_time_seconds: Optional[float] = Field(None, description="Time taken to train this model")
|
||||
error_message: Optional[str] = Field(None, description="Error message if training failed")
|
||||
|
||||
class TrainingResults(BaseModel):
|
||||
"""Schema for overall training results"""
|
||||
total_products: int = Field(..., description="Total number of products")
|
||||
successful_trainings: int = Field(..., description="Number of successfully trained models")
|
||||
failed_trainings: int = Field(..., description="Number of failed trainings")
|
||||
products: List[ProductTrainingResult] = Field(..., description="Results for each product")
|
||||
overall_training_time_seconds: float = Field(..., description="Total training time")
|
||||
|
||||
class TrainingJobResponse(BaseModel):
|
||||
"""Response schema for training job creation"""
|
||||
"""Enhanced response schema for training job with detailed results"""
|
||||
job_id: str = Field(..., description="Unique training job identifier")
|
||||
status: TrainingStatus = Field(..., description="Current job status")
|
||||
message: str = Field(..., description="Status message")
|
||||
tenant_id: str = Field(..., description="Tenant identifier")
|
||||
status: TrainingStatus = Field(..., description="Overall job status")
|
||||
|
||||
# Required fields for basic response (backwards compatibility)
|
||||
message: str = Field(..., description="Status message")
|
||||
created_at: datetime = Field(..., description="Job creation timestamp")
|
||||
estimated_duration_minutes: int = Field(..., description="Estimated completion time in minutes")
|
||||
|
||||
# ✅ FIX: Add custom validator to convert UUID to string
|
||||
# New detailed fields (optional for backwards compatibility)
|
||||
training_results: Optional[TrainingResults] = Field(None, description="Detailed training results")
|
||||
data_summary: Optional[DataSummary] = Field(None, description="Summary of training data used")
|
||||
completed_at: Optional[str] = Field(None, description="Job completion timestamp in ISO format")
|
||||
|
||||
# Additional optional fields
|
||||
error_details: Optional[Dict[str, Any]] = Field(None, description="Detailed error information if failed")
|
||||
processing_metadata: Optional[Dict[str, Any]] = Field(None, description="Additional processing metadata")
|
||||
|
||||
@validator('tenant_id', 'job_id', pre=True)
|
||||
def convert_uuid_to_string(cls, v):
|
||||
"""Convert UUID objects to strings for JSON serialization"""
|
||||
|
||||
@@ -81,28 +81,56 @@ class TrainingService:
|
||||
)
|
||||
|
||||
# Step 3: Compile final results
|
||||
logger.info(f"Training job {job_id} completed successfully")
|
||||
return {
|
||||
final_result = {
|
||||
"job_id": job_id,
|
||||
"status": "completed", # or "running" if async
|
||||
"message": "Training job completed successfully",
|
||||
"tenant_id": tenant_id,
|
||||
"created_at": datetime.now(),
|
||||
"estimated_duration_minutes": 5 # reasonable estimate
|
||||
"status": "completed",
|
||||
"training_results": training_results,
|
||||
"data_summary": {
|
||||
"sales_records": len(training_dataset.sales_data),
|
||||
"weather_records": len(training_dataset.weather_data),
|
||||
"traffic_records": len(training_dataset.traffic_data),
|
||||
"date_range": {
|
||||
"start": training_dataset.date_range.start.isoformat(),
|
||||
"end": training_dataset.date_range.end.isoformat()
|
||||
},
|
||||
"data_sources_used": [source.value for source in training_dataset.date_range.available_sources],
|
||||
"constraints_applied": training_dataset.date_range.constraints
|
||||
},
|
||||
"completed_at": datetime.now().isoformat()
|
||||
}
|
||||
|
||||
logger.info(f"Training job {job_id} completed successfully")
|
||||
return TrainingService.create_detailed_training_response(final_result)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Training job {job_id} failed: {str(e)}")
|
||||
# Return error response that still matches schema
|
||||
return {
|
||||
# Return error response in same detailed format
|
||||
final_result = {
|
||||
"job_id": job_id,
|
||||
"status": "failed",
|
||||
"message": f"Training job failed: {str(e)}",
|
||||
"tenant_id": tenant_id,
|
||||
"created_at": datetime.now(),
|
||||
"estimated_duration_minutes": 0
|
||||
"status": "failed",
|
||||
"training_results": {
|
||||
"total_products": 0,
|
||||
"successful_trainings": 0,
|
||||
"failed_trainings": 0,
|
||||
"models_trained": {},
|
||||
"total_training_time": 0
|
||||
},
|
||||
"data_summary": {
|
||||
"sales_records": 0,
|
||||
"weather_records": 0,
|
||||
"traffic_records": 0,
|
||||
"date_range": {"start": "", "end": ""},
|
||||
"data_sources_used": [],
|
||||
"constraints_applied": {}
|
||||
},
|
||||
"completed_at": datetime.now().isoformat(),
|
||||
"error_message": str(e)
|
||||
}
|
||||
|
||||
return TrainingService.create_detailed_training_response(final_result)
|
||||
|
||||
async def start_single_product_training(
|
||||
self,
|
||||
tenant_id: str,
|
||||
@@ -291,3 +319,45 @@ class TrainingService:
|
||||
"recommended_products": [],
|
||||
"optimal_config": {}
|
||||
}
|
||||
|
||||
def create_detailed_training_response(final_result: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert your final_result structure to match the TrainingJobResponse schema
|
||||
"""
|
||||
# Extract training results and convert to schema format
|
||||
training_results_data = final_result.get("training_results", {})
|
||||
|
||||
# Convert product results to schema format
|
||||
products = []
|
||||
if "models_trained" in training_results_data:
|
||||
for product_name, result in training_results_data["models_trained"].items():
|
||||
products.append({
|
||||
"product_name": product_name,
|
||||
"status": result.get("status", "completed"),
|
||||
"model_id": result.get("model_id"),
|
||||
"data_points": result.get("data_points", 0),
|
||||
"metrics": result.get("metrics"),
|
||||
"training_time_seconds": result.get("training_time_seconds"),
|
||||
"error_message": result.get("error_message")
|
||||
})
|
||||
|
||||
# Build the response matching your structure
|
||||
response_data = {
|
||||
"job_id": final_result["job_id"],
|
||||
"tenant_id": final_result["tenant_id"],
|
||||
"status": final_result["status"],
|
||||
"message": f"Training {final_result['status']} successfully",
|
||||
"created_at": datetime.now(),
|
||||
"estimated_duration_minutes": 0, # Already completed
|
||||
"training_results": {
|
||||
"total_products": len(products),
|
||||
"successful_trainings": len([p for p in products if p["status"] == "completed"]),
|
||||
"failed_trainings": len([p for p in products if p["status"] == "failed"]),
|
||||
"products": products,
|
||||
"overall_training_time_seconds": training_results_data.get("total_training_time", 0)
|
||||
},
|
||||
"data_summary": final_result.get("data_summary", {}),
|
||||
"completed_at": final_result.get("completed_at")
|
||||
}
|
||||
|
||||
return response_data
|
||||
Reference in New Issue
Block a user