Add AI insights feature
This commit is contained in:
@@ -358,13 +358,66 @@ async def clone_demo_data(
|
||||
except KeyError:
|
||||
process_stage_value = None
|
||||
|
||||
# Transform foreign key references (product_id, recipe_id, order_id, forecast_id)
|
||||
transformed_product_id = None
|
||||
if batch_data.get('product_id'):
|
||||
try:
|
||||
transformed_product_id = str(transform_id(batch_data['product_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform product_id",
|
||||
product_id=batch_data.get('product_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_recipe_id = None
|
||||
if batch_data.get('recipe_id'):
|
||||
try:
|
||||
transformed_recipe_id = str(transform_id(batch_data['recipe_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform recipe_id",
|
||||
recipe_id=batch_data.get('recipe_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_order_id = None
|
||||
if batch_data.get('order_id'):
|
||||
try:
|
||||
transformed_order_id = str(transform_id(batch_data['order_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform order_id",
|
||||
order_id=batch_data.get('order_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_forecast_id = None
|
||||
if batch_data.get('forecast_id'):
|
||||
try:
|
||||
transformed_forecast_id = str(transform_id(batch_data['forecast_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform forecast_id",
|
||||
forecast_id=batch_data.get('forecast_id'),
|
||||
error=str(e))
|
||||
|
||||
# Transform equipment_used array
|
||||
transformed_equipment = []
|
||||
if batch_data.get('equipment_used'):
|
||||
for equip_id in batch_data['equipment_used']:
|
||||
try:
|
||||
transformed_equipment.append(str(transform_id(equip_id, virtual_uuid)))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform equipment_id",
|
||||
equipment_id=equip_id,
|
||||
error=str(e))
|
||||
|
||||
# staff_assigned contains user IDs - these should NOT be transformed
|
||||
# because they reference actual user accounts which are NOT cloned
|
||||
# The demo uses the same user accounts across all virtual tenants
|
||||
staff_assigned = batch_data.get('staff_assigned', [])
|
||||
|
||||
new_batch = ProductionBatch(
|
||||
id=str(transformed_id),
|
||||
tenant_id=virtual_uuid,
|
||||
batch_number=f"{session_id[:8]}-{batch_data.get('batch_number', f'BATCH-{uuid.uuid4().hex[:8].upper()}')}",
|
||||
product_id=batch_data.get('product_id'),
|
||||
product_id=transformed_product_id,
|
||||
product_name=batch_data.get('product_name'),
|
||||
recipe_id=batch_data.get('recipe_id'),
|
||||
recipe_id=transformed_recipe_id,
|
||||
planned_start_time=adjusted_planned_start,
|
||||
planned_end_time=adjusted_planned_end,
|
||||
planned_quantity=batch_data.get('planned_quantity'),
|
||||
@@ -389,11 +442,11 @@ async def clone_demo_data(
|
||||
waste_quantity=batch_data.get('waste_quantity'),
|
||||
defect_quantity=batch_data.get('defect_quantity'),
|
||||
waste_defect_type=batch_data.get('waste_defect_type'),
|
||||
equipment_used=batch_data.get('equipment_used'),
|
||||
staff_assigned=batch_data.get('staff_assigned'),
|
||||
equipment_used=transformed_equipment,
|
||||
staff_assigned=staff_assigned,
|
||||
station_id=batch_data.get('station_id'),
|
||||
order_id=batch_data.get('order_id'),
|
||||
forecast_id=batch_data.get('forecast_id'),
|
||||
order_id=transformed_order_id,
|
||||
forecast_id=transformed_forecast_id,
|
||||
is_rush_order=batch_data.get('is_rush_order', False),
|
||||
is_special_recipe=batch_data.get('is_special_recipe', False),
|
||||
is_ai_assisted=batch_data.get('is_ai_assisted', False),
|
||||
|
||||
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Process efficiency analysis
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -71,6 +71,7 @@ class YieldPredictionResponse(BaseModel):
|
||||
async def trigger_yield_prediction(
|
||||
tenant_id: str,
|
||||
request_data: YieldPredictionRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -81,10 +82,12 @@ async def trigger_yield_prediction(
|
||||
2. Runs the YieldInsightsOrchestrator to predict yields
|
||||
3. Generates insights about yield optimization opportunities
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes recommendation events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Prediction parameters
|
||||
request: FastAPI request (for app state access)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
@@ -103,8 +106,13 @@ async def trigger_yield_prediction(
|
||||
from shared.clients.recipes_client import RecipesServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state (if available)
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None) if hasattr(request, 'app') else None
|
||||
|
||||
# Initialize orchestrator and recipes client
|
||||
orchestrator = YieldInsightsOrchestrator()
|
||||
orchestrator = YieldInsightsOrchestrator(
|
||||
event_publisher=event_publisher
|
||||
)
|
||||
recipes_client = RecipesServiceClient(settings)
|
||||
|
||||
# Get recipes to analyze from recipes service via API
|
||||
@@ -186,12 +194,18 @@ async def trigger_yield_prediction(
|
||||
continue # Skip batches without complete data
|
||||
|
||||
production_data.append({
|
||||
'production_date': batch.actual_start_time,
|
||||
'production_run_id': str(batch.id), # Required: unique identifier for each production run
|
||||
'recipe_id': str(batch.recipe_id), # Required: recipe identifier
|
||||
'started_at': batch.actual_start_time,
|
||||
'completed_at': batch.actual_end_time, # Optional but useful for duration analysis
|
||||
'batch_size': float(batch.planned_quantity), # Use planned_quantity as batch_size
|
||||
'planned_quantity': float(batch.planned_quantity),
|
||||
'actual_quantity': float(batch.actual_quantity),
|
||||
'yield_percentage': yield_pct,
|
||||
'worker_id': batch.notes or 'unknown', # Use notes field or default
|
||||
'batch_number': batch.batch_number
|
||||
'staff_assigned': batch.staff_assigned if batch.staff_assigned else ['unknown'],
|
||||
'batch_number': batch.batch_number,
|
||||
'equipment_id': batch.equipment_used[0] if batch.equipment_used and len(batch.equipment_used) > 0 else None,
|
||||
'notes': batch.quality_notes # Optional quality notes
|
||||
})
|
||||
|
||||
if not production_data:
|
||||
@@ -202,6 +216,14 @@ async def trigger_yield_prediction(
|
||||
|
||||
production_history = pd.DataFrame(production_data)
|
||||
|
||||
# Debug: Log DataFrame columns and sample data
|
||||
logger.debug(
|
||||
"Production history DataFrame created",
|
||||
recipe_id=recipe_id,
|
||||
columns=list(production_history.columns),
|
||||
sample_data=production_history.head(1).to_dict('records') if len(production_history) > 0 else None
|
||||
)
|
||||
|
||||
# Run yield analysis
|
||||
results = await orchestrator.analyze_and_post_insights(
|
||||
tenant_id=tenant_id,
|
||||
@@ -291,8 +313,6 @@ async def ml_insights_health():
|
||||
# INTERNAL ENDPOINTS (for demo-session service)
|
||||
# ================================================================
|
||||
|
||||
from fastapi import Request
|
||||
|
||||
# Create a separate router for internal endpoints to avoid the tenant prefix
|
||||
internal_router = APIRouter(
|
||||
tags=["ML Insights - Internal"]
|
||||
@@ -347,6 +367,7 @@ async def generate_yield_insights_internal(
|
||||
result = await trigger_yield_prediction(
|
||||
tenant_id=tenant_id,
|
||||
request_data=request_data,
|
||||
request=request,
|
||||
db=db
|
||||
)
|
||||
|
||||
|
||||
@@ -142,6 +142,7 @@ class ProductionService(StandardFastAPIService):
|
||||
app.state.production_alert_service = self.alert_service # Also store with this name for internal trigger
|
||||
app.state.notification_service = self.notification_service # Notification service for state change events
|
||||
app.state.production_scheduler = self.production_scheduler # Store scheduler for manual triggering
|
||||
app.state.event_publisher = self.event_publisher # Store event publisher for ML insights
|
||||
|
||||
async def on_shutdown(self, app: FastAPI):
|
||||
"""Custom shutdown logic for production service"""
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.yield_predictor import YieldPredictor
|
||||
|
||||
@@ -28,15 +29,18 @@ class YieldInsightsOrchestrator:
|
||||
1. Predict yield for upcoming production run or analyze historical performance
|
||||
2. Generate insights for yield optimization opportunities
|
||||
3. Post insights to AI Insights Service
|
||||
4. Provide yield predictions for production planning
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide yield predictions for production planning
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.predictor = YieldPredictor()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def predict_and_post_insights(
|
||||
self,
|
||||
@@ -54,7 +58,7 @@ class YieldInsightsOrchestrator:
|
||||
recipe_id: Recipe identifier
|
||||
production_history: Historical production runs
|
||||
production_context: Upcoming production context:
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- planned_start_time
|
||||
- batch_size
|
||||
- planned_quantity
|
||||
@@ -109,6 +113,17 @@ class YieldInsightsOrchestrator:
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
recipe_context = production_context.copy() if production_context else {}
|
||||
recipe_context['recipe_id'] = recipe_id
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
recipe_context=recipe_context
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for recipe", recipe_id=recipe_id)
|
||||
@@ -193,6 +208,15 @@ class YieldInsightsOrchestrator:
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
recipe_context={'recipe_id': recipe_id}
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
|
||||
@@ -248,6 +272,83 @@ class YieldInsightsOrchestrator:
|
||||
|
||||
return enriched
|
||||
|
||||
async def _publish_insight_events(
|
||||
self,
|
||||
tenant_id: str,
|
||||
insights: List[Dict[str, Any]],
|
||||
recipe_context: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""
|
||||
Publish recommendation events to RabbitMQ for each insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights (with insight_id from AI Insights Service)
|
||||
recipe_context: Optional recipe context (name, id, etc.)
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("Event publisher not configured, skipping event publication")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
try:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
if priority == 'urgent' or confidence >= 90:
|
||||
severity = 'urgent'
|
||||
elif priority == 'high' or confidence >= 70:
|
||||
severity = 'high'
|
||||
elif priority == 'medium' or confidence >= 50:
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Build event metadata
|
||||
event_metadata = {
|
||||
'insight_id': insight.get('id'), # From AI Insights Service response
|
||||
'insight_type': insight.get('insight_type'),
|
||||
'recipe_id': insight.get('metrics_json', {}).get('recipe_id'),
|
||||
'recipe_name': recipe_context.get('recipe_name') if recipe_context else None,
|
||||
'predicted_yield': insight.get('metrics_json', {}).get('predicted_yield'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation'),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'source_service': 'production',
|
||||
'source_model': 'yield_predictor'
|
||||
}
|
||||
|
||||
# Remove None values
|
||||
event_metadata = {k: v for k, v in event_metadata.items() if v is not None}
|
||||
|
||||
# Publish recommendation event
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_yield_prediction',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_metadata
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Published yield insight recommendation event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
insight_type=insight.get('insight_type'),
|
||||
severity=severity
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
# Don't raise - we don't want to fail the whole workflow if event publishing fails
|
||||
|
||||
async def analyze_all_recipes(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -62,14 +62,14 @@ class YieldPredictor:
|
||||
- planned_quantity
|
||||
- actual_quantity
|
||||
- yield_percentage
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- started_at
|
||||
- completed_at
|
||||
- batch_size
|
||||
- equipment_id (optional)
|
||||
- notes (optional)
|
||||
production_context: Upcoming production context:
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- planned_start_time
|
||||
- batch_size
|
||||
- equipment_id (optional)
|
||||
@@ -212,6 +212,9 @@ class YieldPredictor:
|
||||
df['is_small_batch'] = (df['batch_size'] < df['batch_size'].quantile(0.25)).astype(int)
|
||||
|
||||
# Worker experience features (proxy: number of previous runs)
|
||||
# Extract first worker from staff_assigned list
|
||||
df['worker_id'] = df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
df = df.sort_values('started_at')
|
||||
df['worker_run_count'] = df.groupby('worker_id').cumcount() + 1
|
||||
df['worker_experience_level'] = pd.cut(
|
||||
@@ -232,6 +235,10 @@ class YieldPredictor:
|
||||
factors = {}
|
||||
|
||||
# Worker impact
|
||||
# Extract worker_id from staff_assigned for analysis
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_yields = feature_df.groupby('worker_id')['yield_percentage'].agg(['mean', 'std', 'count'])
|
||||
worker_yields = worker_yields[worker_yields['count'] >= 3] # Min 3 runs per worker
|
||||
|
||||
@@ -339,7 +346,10 @@ class YieldPredictor:
|
||||
if 'duration_hours' in feature_df.columns:
|
||||
feature_columns.append('duration_hours')
|
||||
|
||||
# Encode worker_id
|
||||
# Encode worker_id (extracted from staff_assigned)
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_encoding = {worker: idx for idx, worker in enumerate(feature_df['worker_id'].unique())}
|
||||
feature_df['worker_encoded'] = feature_df['worker_id'].map(worker_encoding)
|
||||
feature_columns.append('worker_encoded')
|
||||
@@ -420,11 +430,15 @@ class YieldPredictor:
|
||||
) -> Dict[str, Any]:
|
||||
"""Predict yield for upcoming production run."""
|
||||
# Extract context
|
||||
worker_id = production_context.get('worker_id')
|
||||
staff_assigned = production_context.get('staff_assigned', [])
|
||||
worker_id = staff_assigned[0] if isinstance(staff_assigned, list) and len(staff_assigned) > 0 else 'unknown'
|
||||
planned_start = pd.to_datetime(production_context.get('planned_start_time'))
|
||||
batch_size = production_context.get('batch_size')
|
||||
|
||||
# Get worker experience
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_runs = feature_df[feature_df['worker_id'] == worker_id]
|
||||
worker_run_count = len(worker_runs) if len(worker_runs) > 0 else 1
|
||||
|
||||
@@ -578,7 +592,7 @@ class YieldPredictor:
|
||||
'action': 'review_production_factors',
|
||||
'params': {
|
||||
'recipe_id': recipe_id,
|
||||
'worker_id': production_context.get('worker_id')
|
||||
'worker_id': worker_id
|
||||
}
|
||||
}]
|
||||
})
|
||||
|
||||
Reference in New Issue
Block a user