Add AI insights feature
This commit is contained in:
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Demand pattern analysis
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -71,6 +71,7 @@ class SafetyStockOptimizationResponse(BaseModel):
|
||||
async def trigger_safety_stock_optimization(
|
||||
tenant_id: str,
|
||||
request_data: SafetyStockOptimizationRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -81,10 +82,12 @@ async def trigger_safety_stock_optimization(
|
||||
2. Runs the SafetyStockInsightsOrchestrator to optimize levels
|
||||
3. Generates insights about safety stock recommendations
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes recommendation events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Optimization parameters
|
||||
request: FastAPI request (for app state access)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
@@ -103,8 +106,13 @@ async def trigger_safety_stock_optimization(
|
||||
from app.models.inventory import Ingredient
|
||||
from sqlalchemy import select
|
||||
|
||||
# Get event publisher from app state (if available)
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None) if hasattr(request, 'app') else None
|
||||
|
||||
# Initialize orchestrator
|
||||
orchestrator = SafetyStockInsightsOrchestrator()
|
||||
orchestrator = SafetyStockInsightsOrchestrator(
|
||||
event_publisher=event_publisher
|
||||
)
|
||||
|
||||
# Get products to optimize
|
||||
if request_data.product_ids:
|
||||
@@ -378,6 +386,7 @@ async def generate_safety_stock_insights_internal(
|
||||
result = await trigger_safety_stock_optimization(
|
||||
tenant_id=tenant_id,
|
||||
request_data=request_data,
|
||||
request=request,
|
||||
db=db
|
||||
)
|
||||
|
||||
|
||||
@@ -126,6 +126,7 @@ class InventoryService(StandardFastAPIService):
|
||||
# Store services in app state
|
||||
app.state.alert_service = alert_service
|
||||
app.state.inventory_scheduler = inventory_scheduler # Store scheduler for manual triggering
|
||||
app.state.event_publisher = self.event_publisher # Store event publisher for ML insights
|
||||
else:
|
||||
self.logger.error("Event publisher not initialized, alert service unavailable")
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.safety_stock_optimizer import SafetyStockOptimizer
|
||||
|
||||
@@ -28,15 +29,18 @@ class SafetyStockInsightsOrchestrator:
|
||||
1. Optimize safety stock from demand history and cost parameters
|
||||
2. Generate insights comparing optimal vs hardcoded approach
|
||||
3. Post insights to AI Insights Service
|
||||
4. Provide optimized safety stock levels for inventory management
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide optimized safety stock levels for inventory management
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.optimizer = SafetyStockOptimizer()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def optimize_and_post_insights(
|
||||
self,
|
||||
@@ -109,6 +113,17 @@ class SafetyStockInsightsOrchestrator:
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = product_characteristics.copy() if product_characteristics else {}
|
||||
product_context['inventory_product_id'] = inventory_product_id
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
@@ -167,6 +182,84 @@ class SafetyStockInsightsOrchestrator:
|
||||
|
||||
return enriched
|
||||
|
||||
async def _publish_insight_events(
|
||||
self,
|
||||
tenant_id: str,
|
||||
insights: List[Dict[str, Any]],
|
||||
product_context: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""
|
||||
Publish recommendation events to RabbitMQ for each insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights (with insight_id from AI Insights Service)
|
||||
product_context: Optional product context (name, id, etc.)
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("Event publisher not configured, skipping event publication")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
try:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
if priority == 'urgent' or confidence >= 90:
|
||||
severity = 'urgent'
|
||||
elif priority == 'high' or confidence >= 70:
|
||||
severity = 'high'
|
||||
elif priority == 'medium' or confidence >= 50:
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Build event metadata
|
||||
event_metadata = {
|
||||
'insight_id': insight.get('id'),
|
||||
'insight_type': insight.get('insight_type'),
|
||||
'inventory_product_id': insight.get('metrics_json', {}).get('inventory_product_id'),
|
||||
'ingredient_name': product_context.get('ingredient_name') if product_context else None,
|
||||
'suggested_safety_stock': insight.get('metrics_json', {}).get('suggested_safety_stock'),
|
||||
'current_safety_stock': insight.get('metrics_json', {}).get('current_safety_stock'),
|
||||
'estimated_savings': insight.get('impact_value'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation'),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'source_service': 'inventory',
|
||||
'source_model': 'safety_stock_optimizer'
|
||||
}
|
||||
|
||||
# Remove None values
|
||||
event_metadata = {k: v for k, v in event_metadata.items() if v is not None}
|
||||
|
||||
# Publish recommendation event
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_safety_stock_optimization',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_metadata
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Published safety stock insight recommendation event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
insight_type=insight.get('insight_type'),
|
||||
severity=severity
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
# Don't raise - we don't want to fail the whole workflow if event publishing fails
|
||||
|
||||
async def optimize_all_products(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
Reference in New Issue
Block a user