Add AI insights feature
This commit is contained in:
@@ -344,7 +344,7 @@ async def generate_batch_forecast(
|
||||
return BatchForecastResponse(
|
||||
id=str(uuid.uuid4()),
|
||||
tenant_id=tenant_id,
|
||||
batch_name=getattr(request, 'batch_name', f"orchestrator-batch-{datetime.now().strftime('%Y%m%d')}"),
|
||||
batch_name=request.batch_name,
|
||||
status="completed",
|
||||
total_products=0,
|
||||
completed_products=0,
|
||||
@@ -358,8 +358,8 @@ async def generate_batch_forecast(
|
||||
|
||||
# IMPROVEMENT: For large batches (>5 products), use background task
|
||||
# For small batches, execute synchronously for immediate results
|
||||
batch_name = getattr(request, 'batch_name', f"batch-{datetime.now().strftime('%Y%m%d_%H%M%S')}")
|
||||
forecast_days = getattr(request, 'forecast_days', 7)
|
||||
batch_name = request.batch_name
|
||||
forecast_days = request.forecast_days
|
||||
|
||||
# Create batch record first
|
||||
batch_id = str(uuid.uuid4())
|
||||
|
||||
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Seasonal trend detection
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -62,6 +62,70 @@ class RulesGenerationResponse(BaseModel):
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
class DemandAnalysisRequest(BaseModel):
|
||||
"""Request schema for demand analysis"""
|
||||
product_ids: Optional[List[str]] = Field(
|
||||
None,
|
||||
description="Specific product IDs to analyze. If None, analyzes all products"
|
||||
)
|
||||
lookback_days: int = Field(
|
||||
90,
|
||||
description="Days of historical data to analyze",
|
||||
ge=30,
|
||||
le=365
|
||||
)
|
||||
forecast_horizon_days: int = Field(
|
||||
30,
|
||||
description="Days to forecast ahead",
|
||||
ge=7,
|
||||
le=90
|
||||
)
|
||||
|
||||
|
||||
class DemandAnalysisResponse(BaseModel):
|
||||
"""Response schema for demand analysis"""
|
||||
success: bool
|
||||
message: str
|
||||
tenant_id: str
|
||||
products_analyzed: int
|
||||
total_insights_generated: int
|
||||
total_insights_posted: int
|
||||
insights_by_product: dict
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
class BusinessRulesAnalysisRequest(BaseModel):
|
||||
"""Request schema for business rules analysis"""
|
||||
product_ids: Optional[List[str]] = Field(
|
||||
None,
|
||||
description="Specific product IDs to analyze. If None, analyzes all products"
|
||||
)
|
||||
lookback_days: int = Field(
|
||||
90,
|
||||
description="Days of historical data to analyze",
|
||||
ge=30,
|
||||
le=365
|
||||
)
|
||||
min_samples: int = Field(
|
||||
10,
|
||||
description="Minimum samples required for rule analysis",
|
||||
ge=5,
|
||||
le=100
|
||||
)
|
||||
|
||||
|
||||
class BusinessRulesAnalysisResponse(BaseModel):
|
||||
"""Response schema for business rules analysis"""
|
||||
success: bool
|
||||
message: str
|
||||
tenant_id: str
|
||||
products_analyzed: int
|
||||
total_insights_generated: int
|
||||
total_insights_posted: int
|
||||
insights_by_product: dict
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
# ================================================================
|
||||
# API ENDPOINTS
|
||||
# ================================================================
|
||||
@@ -70,6 +134,7 @@ class RulesGenerationResponse(BaseModel):
|
||||
async def trigger_rules_generation(
|
||||
tenant_id: str,
|
||||
request_data: RulesGenerationRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -103,8 +168,11 @@ async def trigger_rules_generation(
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = RulesOrchestrator()
|
||||
orchestrator = RulesOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
@@ -278,6 +346,415 @@ async def trigger_rules_generation(
|
||||
)
|
||||
|
||||
|
||||
@router.post("/analyze-demand", response_model=DemandAnalysisResponse)
|
||||
async def trigger_demand_analysis(
|
||||
tenant_id: str,
|
||||
request_data: DemandAnalysisRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
Trigger demand pattern analysis from historical sales data.
|
||||
|
||||
This endpoint:
|
||||
1. Fetches historical sales data for specified products
|
||||
2. Runs the DemandInsightsOrchestrator to analyze patterns
|
||||
3. Generates insights about demand forecasting optimization
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Demand analysis parameters
|
||||
request: FastAPI request object to access app state
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
DemandAnalysisResponse with analysis results
|
||||
"""
|
||||
logger.info(
|
||||
"ML insights demand analysis requested",
|
||||
tenant_id=tenant_id,
|
||||
product_ids=request_data.product_ids,
|
||||
lookback_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
try:
|
||||
# Import ML orchestrator and clients
|
||||
from app.ml.demand_insights_orchestrator import DemandInsightsOrchestrator
|
||||
from shared.clients.sales_client import SalesServiceClient
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = DemandInsightsOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
if request_data.product_ids:
|
||||
# Fetch specific products
|
||||
products = []
|
||||
for product_id in request_data.product_ids:
|
||||
product = await inventory_client.get_ingredient_by_id(
|
||||
ingredient_id=UUID(product_id),
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
if product:
|
||||
products.append(product)
|
||||
else:
|
||||
# Fetch all products for tenant (limit to 10)
|
||||
all_products = await inventory_client.get_all_ingredients(tenant_id=tenant_id)
|
||||
products = all_products[:10] # Limit to prevent timeout
|
||||
|
||||
if not products:
|
||||
return DemandAnalysisResponse(
|
||||
success=False,
|
||||
message="No products found for analysis",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=0,
|
||||
total_insights_generated=0,
|
||||
total_insights_posted=0,
|
||||
insights_by_product={},
|
||||
errors=["No products found"]
|
||||
)
|
||||
|
||||
# Initialize sales client to fetch historical data
|
||||
sales_client = SalesServiceClient(config=settings, calling_service_name="forecasting")
|
||||
|
||||
# Calculate date range
|
||||
end_date = datetime.utcnow()
|
||||
start_date = end_date - timedelta(days=request_data.lookback_days)
|
||||
|
||||
# Process each product
|
||||
total_insights_generated = 0
|
||||
total_insights_posted = 0
|
||||
insights_by_product = {}
|
||||
errors = []
|
||||
|
||||
for product in products:
|
||||
try:
|
||||
product_id = str(product['id'])
|
||||
product_name = product.get('name', 'Unknown')
|
||||
logger.info(f"Analyzing product {product_name} ({product_id})")
|
||||
|
||||
# Fetch sales data for product
|
||||
sales_data = await sales_client.get_sales_data(
|
||||
tenant_id=tenant_id,
|
||||
product_id=product_id,
|
||||
start_date=start_date.strftime('%Y-%m-%d'),
|
||||
end_date=end_date.strftime('%Y-%m-%d')
|
||||
)
|
||||
|
||||
if not sales_data:
|
||||
logger.warning(f"No sales data for product {product_id}")
|
||||
continue
|
||||
|
||||
# Convert to DataFrame
|
||||
sales_df = pd.DataFrame(sales_data)
|
||||
|
||||
if len(sales_df) < 30: # Minimum for demand analysis
|
||||
logger.warning(
|
||||
f"Insufficient data for product {product_id}: "
|
||||
f"{len(sales_df)} samples < 30 required"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check what columns are available and map to expected format
|
||||
logger.debug(f"Sales data columns for product {product_id}: {sales_df.columns.tolist()}")
|
||||
|
||||
# Map common field names to 'quantity' and 'date'
|
||||
if 'quantity' not in sales_df.columns:
|
||||
if 'total_quantity' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['total_quantity']
|
||||
elif 'amount' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['amount']
|
||||
else:
|
||||
logger.warning(f"No quantity field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
if 'date' not in sales_df.columns:
|
||||
if 'sale_date' in sales_df.columns:
|
||||
sales_df['date'] = sales_df['sale_date']
|
||||
else:
|
||||
logger.warning(f"No date field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
# Prepare sales data with required columns
|
||||
sales_df['date'] = pd.to_datetime(sales_df['date'])
|
||||
sales_df['quantity'] = sales_df['quantity'].astype(float)
|
||||
sales_df['day_of_week'] = sales_df['date'].dt.dayofweek
|
||||
|
||||
# Run demand analysis
|
||||
results = await orchestrator.analyze_and_post_demand_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=product_id,
|
||||
sales_data=sales_df,
|
||||
forecast_horizon_days=request_data.forecast_horizon_days,
|
||||
min_history_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
# Track results
|
||||
total_insights_generated += results['insights_generated']
|
||||
total_insights_posted += results['insights_posted']
|
||||
insights_by_product[product_id] = {
|
||||
'product_name': product_name,
|
||||
'insights_posted': results['insights_posted'],
|
||||
'trend_analysis': results.get('trend_analysis', {})
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Product {product_id} demand analysis complete",
|
||||
insights_posted=results['insights_posted']
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error analyzing product {product_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
errors.append(error_msg)
|
||||
|
||||
# Close orchestrator
|
||||
await orchestrator.close()
|
||||
|
||||
# Build response
|
||||
response = DemandAnalysisResponse(
|
||||
success=total_insights_posted > 0,
|
||||
message=f"Successfully generated {total_insights_posted} insights from {len(products)} products",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(products),
|
||||
total_insights_generated=total_insights_generated,
|
||||
total_insights_posted=total_insights_posted,
|
||||
insights_by_product=insights_by_product,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"ML insights demand analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
total_insights=total_insights_posted
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"ML insights demand analysis failed",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"Demand analysis failed: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
@router.post("/analyze-business-rules", response_model=BusinessRulesAnalysisResponse)
|
||||
async def trigger_business_rules_analysis(
|
||||
tenant_id: str,
|
||||
request_data: BusinessRulesAnalysisRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
Trigger business rules optimization analysis from historical sales data.
|
||||
|
||||
This endpoint:
|
||||
1. Fetches historical sales data for specified products
|
||||
2. Runs the BusinessRulesInsightsOrchestrator to analyze rules
|
||||
3. Generates insights about business rule optimization
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Business rules analysis parameters
|
||||
request: FastAPI request object to access app state
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
BusinessRulesAnalysisResponse with analysis results
|
||||
"""
|
||||
logger.info(
|
||||
"ML insights business rules analysis requested",
|
||||
tenant_id=tenant_id,
|
||||
product_ids=request_data.product_ids,
|
||||
lookback_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
try:
|
||||
# Import ML orchestrator and clients
|
||||
from app.ml.business_rules_insights_orchestrator import BusinessRulesInsightsOrchestrator
|
||||
from shared.clients.sales_client import SalesServiceClient
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = BusinessRulesInsightsOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
if request_data.product_ids:
|
||||
# Fetch specific products
|
||||
products = []
|
||||
for product_id in request_data.product_ids:
|
||||
product = await inventory_client.get_ingredient_by_id(
|
||||
ingredient_id=UUID(product_id),
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
if product:
|
||||
products.append(product)
|
||||
else:
|
||||
# Fetch all products for tenant (limit to 10)
|
||||
all_products = await inventory_client.get_all_ingredients(tenant_id=tenant_id)
|
||||
products = all_products[:10] # Limit to prevent timeout
|
||||
|
||||
if not products:
|
||||
return BusinessRulesAnalysisResponse(
|
||||
success=False,
|
||||
message="No products found for analysis",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=0,
|
||||
total_insights_generated=0,
|
||||
total_insights_posted=0,
|
||||
insights_by_product={},
|
||||
errors=["No products found"]
|
||||
)
|
||||
|
||||
# Initialize sales client to fetch historical data
|
||||
sales_client = SalesServiceClient(config=settings, calling_service_name="forecasting")
|
||||
|
||||
# Calculate date range
|
||||
end_date = datetime.utcnow()
|
||||
start_date = end_date - timedelta(days=request_data.lookback_days)
|
||||
|
||||
# Process each product
|
||||
total_insights_generated = 0
|
||||
total_insights_posted = 0
|
||||
insights_by_product = {}
|
||||
errors = []
|
||||
|
||||
for product in products:
|
||||
try:
|
||||
product_id = str(product['id'])
|
||||
product_name = product.get('name', 'Unknown')
|
||||
logger.info(f"Analyzing product {product_name} ({product_id})")
|
||||
|
||||
# Fetch sales data for product
|
||||
sales_data = await sales_client.get_sales_data(
|
||||
tenant_id=tenant_id,
|
||||
product_id=product_id,
|
||||
start_date=start_date.strftime('%Y-%m-%d'),
|
||||
end_date=end_date.strftime('%Y-%m-%d')
|
||||
)
|
||||
|
||||
if not sales_data:
|
||||
logger.warning(f"No sales data for product {product_id}")
|
||||
continue
|
||||
|
||||
# Convert to DataFrame
|
||||
sales_df = pd.DataFrame(sales_data)
|
||||
|
||||
if len(sales_df) < request_data.min_samples:
|
||||
logger.warning(
|
||||
f"Insufficient data for product {product_id}: "
|
||||
f"{len(sales_df)} samples < {request_data.min_samples} required"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check what columns are available and map to expected format
|
||||
logger.debug(f"Sales data columns for product {product_id}: {sales_df.columns.tolist()}")
|
||||
|
||||
# Map common field names to 'quantity' and 'date'
|
||||
if 'quantity' not in sales_df.columns:
|
||||
if 'total_quantity' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['total_quantity']
|
||||
elif 'amount' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['amount']
|
||||
else:
|
||||
logger.warning(f"No quantity field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
if 'date' not in sales_df.columns:
|
||||
if 'sale_date' in sales_df.columns:
|
||||
sales_df['date'] = sales_df['sale_date']
|
||||
else:
|
||||
logger.warning(f"No date field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
# Prepare sales data with required columns
|
||||
sales_df['date'] = pd.to_datetime(sales_df['date'])
|
||||
sales_df['quantity'] = sales_df['quantity'].astype(float)
|
||||
sales_df['day_of_week'] = sales_df['date'].dt.dayofweek
|
||||
|
||||
# Run business rules analysis
|
||||
results = await orchestrator.analyze_and_post_business_rules_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=product_id,
|
||||
sales_data=sales_df,
|
||||
min_samples=request_data.min_samples
|
||||
)
|
||||
|
||||
# Track results
|
||||
total_insights_generated += results['insights_generated']
|
||||
total_insights_posted += results['insights_posted']
|
||||
insights_by_product[product_id] = {
|
||||
'product_name': product_name,
|
||||
'insights_posted': results['insights_posted'],
|
||||
'rules_learned': len(results.get('rules', {}))
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Product {product_id} business rules analysis complete",
|
||||
insights_posted=results['insights_posted']
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error analyzing product {product_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
errors.append(error_msg)
|
||||
|
||||
# Close orchestrator
|
||||
await orchestrator.close()
|
||||
|
||||
# Build response
|
||||
response = BusinessRulesAnalysisResponse(
|
||||
success=total_insights_posted > 0,
|
||||
message=f"Successfully generated {total_insights_posted} insights from {len(products)} products",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(products),
|
||||
total_insights_generated=total_insights_generated,
|
||||
total_insights_posted=total_insights_posted,
|
||||
insights_by_product=insights_by_product,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"ML insights business rules analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
total_insights=total_insights_posted
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"ML insights business rules analysis failed",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"Business rules analysis failed: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def ml_insights_health():
|
||||
"""Health check for ML insights endpoints"""
|
||||
@@ -285,6 +762,8 @@ async def ml_insights_health():
|
||||
"status": "healthy",
|
||||
"service": "forecasting-ml-insights",
|
||||
"endpoints": [
|
||||
"POST /ml/insights/generate-rules"
|
||||
"POST /ml/insights/generate-rules",
|
||||
"POST /ml/insights/analyze-demand",
|
||||
"POST /ml/insights/analyze-business-rules"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -137,6 +137,9 @@ class ForecastingService(StandardFastAPIService):
|
||||
else:
|
||||
self.logger.error("Event publisher not initialized, alert service unavailable")
|
||||
|
||||
# Store the event publisher in app state for internal API access
|
||||
app.state.event_publisher = self.event_publisher
|
||||
|
||||
|
||||
async def on_shutdown(self, app: FastAPI):
|
||||
"""Custom shutdown logic for forecasting service"""
|
||||
|
||||
@@ -0,0 +1,393 @@
|
||||
"""
|
||||
Business Rules Insights Orchestrator
|
||||
Coordinates business rules optimization and insight posting
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from typing import Dict, List, Any, Optional
|
||||
import structlog
|
||||
from datetime import datetime
|
||||
from uuid import UUID
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.dynamic_rules_engine import DynamicRulesEngine
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class BusinessRulesInsightsOrchestrator:
|
||||
"""
|
||||
Orchestrates business rules analysis and insight generation workflow.
|
||||
|
||||
Workflow:
|
||||
1. Analyze dynamic business rule performance
|
||||
2. Generate insights for rule optimization
|
||||
3. Post insights to AI Insights Service
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide rule optimization for forecasting
|
||||
6. Track rule effectiveness and improvements
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.rules_engine = DynamicRulesEngine()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def analyze_and_post_business_rules_insights(
|
||||
self,
|
||||
tenant_id: str,
|
||||
inventory_product_id: str,
|
||||
sales_data: pd.DataFrame,
|
||||
min_samples: int = 10
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Complete workflow: Analyze business rules and post insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
sales_data: Historical sales data
|
||||
min_samples: Minimum samples for rule analysis
|
||||
|
||||
Returns:
|
||||
Workflow results with analysis and posted insights
|
||||
"""
|
||||
logger.info(
|
||||
"Starting business rules analysis workflow",
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
samples=len(sales_data)
|
||||
)
|
||||
|
||||
# Step 1: Learn and analyze rules
|
||||
rules_results = await self.rules_engine.learn_all_rules(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
external_data=None,
|
||||
min_samples=min_samples
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Business rules analysis complete",
|
||||
insights_generated=len(rules_results.get('insights', [])),
|
||||
rules_learned=len(rules_results.get('rules', {}))
|
||||
)
|
||||
|
||||
# Step 2: Enrich insights with tenant_id and product context
|
||||
enriched_insights = self._enrich_insights(
|
||||
rules_results.get('insights', []),
|
||||
tenant_id,
|
||||
inventory_product_id
|
||||
)
|
||||
|
||||
# Step 3: Post insights to AI Insights Service
|
||||
if enriched_insights:
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_insights
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Business rules insights posted to AI Insights Service",
|
||||
inventory_product_id=inventory_product_id,
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
'learned_at': rules_results['learned_at'],
|
||||
'rules': rules_results.get('rules', {}),
|
||||
'insights_generated': len(enriched_insights),
|
||||
'insights_posted': post_results['successful'],
|
||||
'insights_failed': post_results['failed'],
|
||||
'created_insights': post_results.get('created_insights', [])
|
||||
}
|
||||
|
||||
def _enrich_insights(
|
||||
self,
|
||||
insights: List[Dict[str, Any]],
|
||||
tenant_id: str,
|
||||
inventory_product_id: str
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Enrich insights with required fields for AI Insights Service.
|
||||
|
||||
Args:
|
||||
insights: Raw insights from rules engine
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Enriched insights ready for posting
|
||||
"""
|
||||
enriched = []
|
||||
|
||||
for insight in insights:
|
||||
# Add required tenant_id
|
||||
enriched_insight = insight.copy()
|
||||
enriched_insight['tenant_id'] = tenant_id
|
||||
|
||||
# Add product context to metrics
|
||||
if 'metrics_json' not in enriched_insight:
|
||||
enriched_insight['metrics_json'] = {}
|
||||
|
||||
enriched_insight['metrics_json']['inventory_product_id'] = inventory_product_id
|
||||
|
||||
# Add source metadata
|
||||
enriched_insight['source_service'] = 'forecasting'
|
||||
enriched_insight['source_model'] = 'dynamic_rules_engine'
|
||||
enriched_insight['detected_at'] = datetime.utcnow().isoformat()
|
||||
|
||||
enriched.append(enriched_insight)
|
||||
|
||||
return enriched
|
||||
|
||||
async def analyze_all_business_rules(
|
||||
self,
|
||||
tenant_id: str,
|
||||
products_data: Dict[str, pd.DataFrame],
|
||||
min_samples: int = 10
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze all products for business rules optimization and generate comparative insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
products_data: Dict of {inventory_product_id: sales_data DataFrame}
|
||||
min_samples: Minimum samples for rule analysis
|
||||
|
||||
Returns:
|
||||
Comprehensive analysis with rule optimization insights
|
||||
"""
|
||||
logger.info(
|
||||
"Analyzing business rules for all products",
|
||||
tenant_id=tenant_id,
|
||||
products=len(products_data)
|
||||
)
|
||||
|
||||
all_results = []
|
||||
total_insights_posted = 0
|
||||
|
||||
# Analyze each product
|
||||
for inventory_product_id, sales_data in products_data.items():
|
||||
try:
|
||||
results = await self.analyze_and_post_business_rules_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
min_samples=min_samples
|
||||
)
|
||||
|
||||
all_results.append(results)
|
||||
total_insights_posted += results['insights_posted']
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error analyzing business rules for product",
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
# Generate summary insight
|
||||
if total_insights_posted > 0:
|
||||
summary_insight = self._generate_portfolio_summary_insight(
|
||||
tenant_id, all_results
|
||||
)
|
||||
|
||||
if summary_insight:
|
||||
enriched_summary = self._enrich_insights(
|
||||
[summary_insight], tenant_id, 'all_products'
|
||||
)
|
||||
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_summary
|
||||
)
|
||||
|
||||
total_insights_posted += post_results['successful']
|
||||
|
||||
logger.info(
|
||||
"All business rules analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(all_results),
|
||||
total_insights_posted=total_insights_posted
|
||||
)
|
||||
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'analyzed_at': datetime.utcnow().isoformat(),
|
||||
'products_analyzed': len(all_results),
|
||||
'product_results': all_results,
|
||||
'total_insights_posted': total_insights_posted
|
||||
}
|
||||
|
||||
def _generate_portfolio_summary_insight(
|
||||
self,
|
||||
tenant_id: str,
|
||||
all_results: List[Dict[str, Any]]
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Generate portfolio-level business rules summary insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
all_results: All product analysis results
|
||||
|
||||
Returns:
|
||||
Summary insight or None
|
||||
"""
|
||||
if not all_results:
|
||||
return None
|
||||
|
||||
# Calculate summary statistics
|
||||
total_products = len(all_results)
|
||||
total_rules = sum(len(r.get('rules', {})) for r in all_results)
|
||||
|
||||
# Count products with significant rule improvements
|
||||
significant_improvements = sum(1 for r in all_results
|
||||
if any('improvement' in str(v).lower() for v in r.get('rules', {}).values()))
|
||||
|
||||
return {
|
||||
'type': 'recommendation',
|
||||
'priority': 'high' if significant_improvements > total_products * 0.3 else 'medium',
|
||||
'category': 'forecasting',
|
||||
'title': f'Business Rule Optimization: {total_products} Products Analyzed',
|
||||
'description': f'Learned {total_rules} dynamic rules across {total_products} products. Identified {significant_improvements} products with significant rule improvements.',
|
||||
'impact_type': 'operational_efficiency',
|
||||
'impact_value': total_rules,
|
||||
'impact_unit': 'rules',
|
||||
'confidence': 80,
|
||||
'metrics_json': {
|
||||
'total_products': total_products,
|
||||
'total_rules': total_rules,
|
||||
'significant_improvements': significant_improvements,
|
||||
'rules_per_product': round(total_rules / total_products, 2)
|
||||
},
|
||||
'actionable': True,
|
||||
'recommendation_actions': [
|
||||
{
|
||||
'label': 'Review Learned Rules',
|
||||
'action': 'review_business_rules',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
},
|
||||
{
|
||||
'label': 'Implement Optimized Rules',
|
||||
'action': 'implement_business_rules',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
}
|
||||
],
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
async def get_learned_rules(
|
||||
self,
|
||||
inventory_product_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached learned rules for a product.
|
||||
|
||||
Args:
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Learned rules or None if not analyzed
|
||||
"""
|
||||
return self.rules_engine.get_all_rules(inventory_product_id)
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for business rules insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_business_rule',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
403
services/forecasting/app/ml/demand_insights_orchestrator.py
Normal file
403
services/forecasting/app/ml/demand_insights_orchestrator.py
Normal file
@@ -0,0 +1,403 @@
|
||||
"""
|
||||
Demand Insights Orchestrator
|
||||
Coordinates demand forecasting analysis and insight posting
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from typing import Dict, List, Any, Optional
|
||||
import structlog
|
||||
from datetime import datetime
|
||||
from uuid import UUID
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.predictor import BakeryForecaster
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class DemandInsightsOrchestrator:
|
||||
"""
|
||||
Orchestrates demand forecasting analysis and insight generation workflow.
|
||||
|
||||
Workflow:
|
||||
1. Analyze historical demand patterns from sales data
|
||||
2. Generate insights for demand optimization
|
||||
3. Post insights to AI Insights Service
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide demand pattern analysis for forecasting
|
||||
6. Track demand forecasting performance
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.forecaster = BakeryForecaster()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def analyze_and_post_demand_insights(
|
||||
self,
|
||||
tenant_id: str,
|
||||
inventory_product_id: str,
|
||||
sales_data: pd.DataFrame,
|
||||
forecast_horizon_days: int = 30,
|
||||
min_history_days: int = 90
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Complete workflow: Analyze demand and post insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
sales_data: Historical sales data
|
||||
forecast_horizon_days: Days to forecast ahead
|
||||
min_history_days: Minimum days of history required
|
||||
|
||||
Returns:
|
||||
Workflow results with analysis and posted insights
|
||||
"""
|
||||
logger.info(
|
||||
"Starting demand forecasting analysis workflow",
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
history_days=len(sales_data)
|
||||
)
|
||||
|
||||
# Step 1: Analyze demand patterns
|
||||
analysis_results = await self.forecaster.analyze_demand_patterns(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
forecast_horizon_days=forecast_horizon_days,
|
||||
min_history_days=min_history_days
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Demand analysis complete",
|
||||
inventory_product_id=inventory_product_id,
|
||||
insights_generated=len(analysis_results.get('insights', []))
|
||||
)
|
||||
|
||||
# Step 2: Enrich insights with tenant_id and product context
|
||||
enriched_insights = self._enrich_insights(
|
||||
analysis_results.get('insights', []),
|
||||
tenant_id,
|
||||
inventory_product_id
|
||||
)
|
||||
|
||||
# Step 3: Post insights to AI Insights Service
|
||||
if enriched_insights:
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_insights
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Demand insights posted to AI Insights Service",
|
||||
inventory_product_id=inventory_product_id,
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
'analyzed_at': analysis_results['analyzed_at'],
|
||||
'history_days': analysis_results['history_days'],
|
||||
'demand_patterns': analysis_results.get('patterns', {}),
|
||||
'trend_analysis': analysis_results.get('trend_analysis', {}),
|
||||
'seasonal_factors': analysis_results.get('seasonal_factors', {}),
|
||||
'insights_generated': len(enriched_insights),
|
||||
'insights_posted': post_results['successful'],
|
||||
'insights_failed': post_results['failed'],
|
||||
'created_insights': post_results.get('created_insights', [])
|
||||
}
|
||||
|
||||
def _enrich_insights(
|
||||
self,
|
||||
insights: List[Dict[str, Any]],
|
||||
tenant_id: str,
|
||||
inventory_product_id: str
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Enrich insights with required fields for AI Insights Service.
|
||||
|
||||
Args:
|
||||
insights: Raw insights from forecaster
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Enriched insights ready for posting
|
||||
"""
|
||||
enriched = []
|
||||
|
||||
for insight in insights:
|
||||
# Add required tenant_id
|
||||
enriched_insight = insight.copy()
|
||||
enriched_insight['tenant_id'] = tenant_id
|
||||
|
||||
# Add product context to metrics
|
||||
if 'metrics_json' not in enriched_insight:
|
||||
enriched_insight['metrics_json'] = {}
|
||||
|
||||
enriched_insight['metrics_json']['inventory_product_id'] = inventory_product_id
|
||||
|
||||
# Add source metadata
|
||||
enriched_insight['source_service'] = 'forecasting'
|
||||
enriched_insight['source_model'] = 'demand_analyzer'
|
||||
enriched_insight['detected_at'] = datetime.utcnow().isoformat()
|
||||
|
||||
enriched.append(enriched_insight)
|
||||
|
||||
return enriched
|
||||
|
||||
async def analyze_all_products(
|
||||
self,
|
||||
tenant_id: str,
|
||||
products_data: Dict[str, pd.DataFrame],
|
||||
forecast_horizon_days: int = 30,
|
||||
min_history_days: int = 90
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze all products for a tenant and generate comparative insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
products_data: Dict of {inventory_product_id: sales_data DataFrame}
|
||||
forecast_horizon_days: Days to forecast
|
||||
min_history_days: Minimum history required
|
||||
|
||||
Returns:
|
||||
Comprehensive analysis with product comparison
|
||||
"""
|
||||
logger.info(
|
||||
"Analyzing all products for tenant",
|
||||
tenant_id=tenant_id,
|
||||
products=len(products_data)
|
||||
)
|
||||
|
||||
all_results = []
|
||||
total_insights_posted = 0
|
||||
|
||||
# Analyze each product
|
||||
for inventory_product_id, sales_data in products_data.items():
|
||||
try:
|
||||
results = await self.analyze_and_post_demand_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
forecast_horizon_days=forecast_horizon_days,
|
||||
min_history_days=min_history_days
|
||||
)
|
||||
|
||||
all_results.append(results)
|
||||
total_insights_posted += results['insights_posted']
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error analyzing product",
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
# Generate summary insight
|
||||
if total_insights_posted > 0:
|
||||
summary_insight = self._generate_portfolio_summary_insight(
|
||||
tenant_id, all_results
|
||||
)
|
||||
|
||||
if summary_insight:
|
||||
enriched_summary = self._enrich_insights(
|
||||
[summary_insight], tenant_id, 'all_products'
|
||||
)
|
||||
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_summary
|
||||
)
|
||||
|
||||
total_insights_posted += post_results['successful']
|
||||
|
||||
logger.info(
|
||||
"All products analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(all_results),
|
||||
total_insights_posted=total_insights_posted
|
||||
)
|
||||
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'analyzed_at': datetime.utcnow().isoformat(),
|
||||
'products_analyzed': len(all_results),
|
||||
'product_results': all_results,
|
||||
'total_insights_posted': total_insights_posted
|
||||
}
|
||||
|
||||
def _generate_portfolio_summary_insight(
|
||||
self,
|
||||
tenant_id: str,
|
||||
all_results: List[Dict[str, Any]]
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Generate portfolio-level summary insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
all_results: All product analysis results
|
||||
|
||||
Returns:
|
||||
Summary insight or None
|
||||
"""
|
||||
if not all_results:
|
||||
return None
|
||||
|
||||
# Calculate summary statistics
|
||||
total_products = len(all_results)
|
||||
high_demand_products = sum(1 for r in all_results if r.get('trend_analysis', {}).get('is_increasing', False))
|
||||
|
||||
avg_seasonal_factor = sum(
|
||||
r.get('seasonal_factors', {}).get('peak_ratio', 1.0)
|
||||
for r in all_results
|
||||
if r.get('seasonal_factors', {}).get('peak_ratio')
|
||||
) / max(1, len(all_results))
|
||||
|
||||
return {
|
||||
'type': 'recommendation',
|
||||
'priority': 'medium' if high_demand_products > total_products * 0.5 else 'low',
|
||||
'category': 'forecasting',
|
||||
'title': f'Demand Pattern Summary: {total_products} Products Analyzed',
|
||||
'description': f'Detected {high_demand_products} products with increasing demand trends. Average seasonal peak ratio: {avg_seasonal_factor:.2f}x.',
|
||||
'impact_type': 'demand_optimization',
|
||||
'impact_value': high_demand_products,
|
||||
'impact_unit': 'products',
|
||||
'confidence': 75,
|
||||
'metrics_json': {
|
||||
'total_products': total_products,
|
||||
'high_demand_products': high_demand_products,
|
||||
'avg_seasonal_factor': round(avg_seasonal_factor, 2),
|
||||
'trend_strength': 'strong' if high_demand_products > total_products * 0.7 else 'moderate'
|
||||
},
|
||||
'actionable': True,
|
||||
'recommendation_actions': [
|
||||
{
|
||||
'label': 'Review Production Schedule',
|
||||
'action': 'review_production_schedule',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
},
|
||||
{
|
||||
'label': 'Adjust Inventory Levels',
|
||||
'action': 'adjust_inventory_levels',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
}
|
||||
],
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'demand_analyzer'
|
||||
}
|
||||
|
||||
async def get_demand_patterns(
|
||||
self,
|
||||
inventory_product_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached demand patterns for a product.
|
||||
|
||||
Args:
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Demand patterns or None if not analyzed
|
||||
"""
|
||||
return self.forecaster.get_cached_demand_patterns(inventory_product_id)
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for demand insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'demand_analyzer'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_demand_forecast',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published demand insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish demand insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
@@ -11,6 +11,7 @@ from uuid import UUID
|
||||
|
||||
from app.ml.dynamic_rules_engine import DynamicRulesEngine
|
||||
from app.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
@@ -29,10 +30,12 @@ class RulesOrchestrator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.rules_engine = DynamicRulesEngine()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def learn_and_post_rules(
|
||||
self,
|
||||
@@ -100,7 +103,17 @@ class RulesOrchestrator:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post")
|
||||
|
||||
# Step 4: Return comprehensive results
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
@@ -229,6 +242,71 @@ class RulesOrchestrator:
|
||||
|
||||
return results
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for business rules insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_business_rule',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
|
||||
Reference in New Issue
Block a user