Add AI insights feature
This commit is contained in:
@@ -62,6 +62,9 @@ class OrchestratorClient:
|
||||
params={
|
||||
"tenant_id": tenant_id,
|
||||
**query_params
|
||||
},
|
||||
headers={
|
||||
"x-internal-service": "alert-intelligence"
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@@ -450,5 +450,107 @@ RECOMMENDATION_TEMPLATES = {
|
||||
"potential_time_saved_minutes": "time_saved",
|
||||
"suggestion": "suggestion"
|
||||
}
|
||||
},
|
||||
|
||||
# ==================== AI INSIGHTS RECOMMENDATIONS ====================
|
||||
|
||||
"ai_yield_prediction": {
|
||||
"title_key": "recommendations.ai_yield_prediction.title",
|
||||
"title_params": {
|
||||
"recipe_name": "recipe_name"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_yield_prediction.message"
|
||||
},
|
||||
"message_params": {
|
||||
"recipe_name": "recipe_name",
|
||||
"predicted_yield_percent": "predicted_yield",
|
||||
"confidence_percent": "confidence",
|
||||
"recommendation": "recommendation"
|
||||
}
|
||||
},
|
||||
|
||||
"ai_safety_stock_optimization": {
|
||||
"title_key": "recommendations.ai_safety_stock_optimization.title",
|
||||
"title_params": {
|
||||
"ingredient_name": "ingredient_name"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_safety_stock_optimization.message"
|
||||
},
|
||||
"message_params": {
|
||||
"ingredient_name": "ingredient_name",
|
||||
"suggested_safety_stock_kg": "suggested_safety_stock",
|
||||
"current_safety_stock_kg": "current_safety_stock",
|
||||
"estimated_savings_eur": "estimated_savings",
|
||||
"confidence_percent": "confidence"
|
||||
}
|
||||
},
|
||||
|
||||
"ai_supplier_recommendation": {
|
||||
"title_key": "recommendations.ai_supplier_recommendation.title",
|
||||
"title_params": {
|
||||
"supplier_name": "supplier_name"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_supplier_recommendation.message"
|
||||
},
|
||||
"message_params": {
|
||||
"supplier_name": "supplier_name",
|
||||
"reliability_score": "reliability_score",
|
||||
"recommendation": "recommendation",
|
||||
"confidence_percent": "confidence"
|
||||
}
|
||||
},
|
||||
|
||||
"ai_price_forecast": {
|
||||
"title_key": "recommendations.ai_price_forecast.title",
|
||||
"title_params": {
|
||||
"ingredient_name": "ingredient_name"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_price_forecast.message"
|
||||
},
|
||||
"message_params": {
|
||||
"ingredient_name": "ingredient_name",
|
||||
"predicted_price_eur": "predicted_price",
|
||||
"current_price_eur": "current_price",
|
||||
"price_trend": "price_trend",
|
||||
"recommendation": "recommendation",
|
||||
"confidence_percent": "confidence"
|
||||
}
|
||||
},
|
||||
|
||||
"ai_demand_forecast": {
|
||||
"title_key": "recommendations.ai_demand_forecast.title",
|
||||
"title_params": {
|
||||
"product_name": "product_name"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_demand_forecast.message"
|
||||
},
|
||||
"message_params": {
|
||||
"product_name": "product_name",
|
||||
"predicted_demand": "predicted_demand",
|
||||
"forecast_period": "forecast_period",
|
||||
"confidence_percent": "confidence",
|
||||
"recommendation": "recommendation"
|
||||
}
|
||||
},
|
||||
|
||||
"ai_business_rule": {
|
||||
"title_key": "recommendations.ai_business_rule.title",
|
||||
"title_params": {
|
||||
"rule_category": "rule_category"
|
||||
},
|
||||
"message_variants": {
|
||||
"generic": "recommendations.ai_business_rule.message"
|
||||
},
|
||||
"message_params": {
|
||||
"rule_category": "rule_category",
|
||||
"rule_description": "rule_description",
|
||||
"confidence_percent": "confidence",
|
||||
"recommendation": "recommendation"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -344,7 +344,7 @@ async def generate_batch_forecast(
|
||||
return BatchForecastResponse(
|
||||
id=str(uuid.uuid4()),
|
||||
tenant_id=tenant_id,
|
||||
batch_name=getattr(request, 'batch_name', f"orchestrator-batch-{datetime.now().strftime('%Y%m%d')}"),
|
||||
batch_name=request.batch_name,
|
||||
status="completed",
|
||||
total_products=0,
|
||||
completed_products=0,
|
||||
@@ -358,8 +358,8 @@ async def generate_batch_forecast(
|
||||
|
||||
# IMPROVEMENT: For large batches (>5 products), use background task
|
||||
# For small batches, execute synchronously for immediate results
|
||||
batch_name = getattr(request, 'batch_name', f"batch-{datetime.now().strftime('%Y%m%d_%H%M%S')}")
|
||||
forecast_days = getattr(request, 'forecast_days', 7)
|
||||
batch_name = request.batch_name
|
||||
forecast_days = request.forecast_days
|
||||
|
||||
# Create batch record first
|
||||
batch_id = str(uuid.uuid4())
|
||||
|
||||
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Seasonal trend detection
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks
|
||||
from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -62,6 +62,70 @@ class RulesGenerationResponse(BaseModel):
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
class DemandAnalysisRequest(BaseModel):
|
||||
"""Request schema for demand analysis"""
|
||||
product_ids: Optional[List[str]] = Field(
|
||||
None,
|
||||
description="Specific product IDs to analyze. If None, analyzes all products"
|
||||
)
|
||||
lookback_days: int = Field(
|
||||
90,
|
||||
description="Days of historical data to analyze",
|
||||
ge=30,
|
||||
le=365
|
||||
)
|
||||
forecast_horizon_days: int = Field(
|
||||
30,
|
||||
description="Days to forecast ahead",
|
||||
ge=7,
|
||||
le=90
|
||||
)
|
||||
|
||||
|
||||
class DemandAnalysisResponse(BaseModel):
|
||||
"""Response schema for demand analysis"""
|
||||
success: bool
|
||||
message: str
|
||||
tenant_id: str
|
||||
products_analyzed: int
|
||||
total_insights_generated: int
|
||||
total_insights_posted: int
|
||||
insights_by_product: dict
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
class BusinessRulesAnalysisRequest(BaseModel):
|
||||
"""Request schema for business rules analysis"""
|
||||
product_ids: Optional[List[str]] = Field(
|
||||
None,
|
||||
description="Specific product IDs to analyze. If None, analyzes all products"
|
||||
)
|
||||
lookback_days: int = Field(
|
||||
90,
|
||||
description="Days of historical data to analyze",
|
||||
ge=30,
|
||||
le=365
|
||||
)
|
||||
min_samples: int = Field(
|
||||
10,
|
||||
description="Minimum samples required for rule analysis",
|
||||
ge=5,
|
||||
le=100
|
||||
)
|
||||
|
||||
|
||||
class BusinessRulesAnalysisResponse(BaseModel):
|
||||
"""Response schema for business rules analysis"""
|
||||
success: bool
|
||||
message: str
|
||||
tenant_id: str
|
||||
products_analyzed: int
|
||||
total_insights_generated: int
|
||||
total_insights_posted: int
|
||||
insights_by_product: dict
|
||||
errors: List[str] = []
|
||||
|
||||
|
||||
# ================================================================
|
||||
# API ENDPOINTS
|
||||
# ================================================================
|
||||
@@ -70,6 +134,7 @@ class RulesGenerationResponse(BaseModel):
|
||||
async def trigger_rules_generation(
|
||||
tenant_id: str,
|
||||
request_data: RulesGenerationRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -103,8 +168,11 @@ async def trigger_rules_generation(
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = RulesOrchestrator()
|
||||
orchestrator = RulesOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
@@ -278,6 +346,415 @@ async def trigger_rules_generation(
|
||||
)
|
||||
|
||||
|
||||
@router.post("/analyze-demand", response_model=DemandAnalysisResponse)
|
||||
async def trigger_demand_analysis(
|
||||
tenant_id: str,
|
||||
request_data: DemandAnalysisRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
Trigger demand pattern analysis from historical sales data.
|
||||
|
||||
This endpoint:
|
||||
1. Fetches historical sales data for specified products
|
||||
2. Runs the DemandInsightsOrchestrator to analyze patterns
|
||||
3. Generates insights about demand forecasting optimization
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Demand analysis parameters
|
||||
request: FastAPI request object to access app state
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
DemandAnalysisResponse with analysis results
|
||||
"""
|
||||
logger.info(
|
||||
"ML insights demand analysis requested",
|
||||
tenant_id=tenant_id,
|
||||
product_ids=request_data.product_ids,
|
||||
lookback_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
try:
|
||||
# Import ML orchestrator and clients
|
||||
from app.ml.demand_insights_orchestrator import DemandInsightsOrchestrator
|
||||
from shared.clients.sales_client import SalesServiceClient
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = DemandInsightsOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
if request_data.product_ids:
|
||||
# Fetch specific products
|
||||
products = []
|
||||
for product_id in request_data.product_ids:
|
||||
product = await inventory_client.get_ingredient_by_id(
|
||||
ingredient_id=UUID(product_id),
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
if product:
|
||||
products.append(product)
|
||||
else:
|
||||
# Fetch all products for tenant (limit to 10)
|
||||
all_products = await inventory_client.get_all_ingredients(tenant_id=tenant_id)
|
||||
products = all_products[:10] # Limit to prevent timeout
|
||||
|
||||
if not products:
|
||||
return DemandAnalysisResponse(
|
||||
success=False,
|
||||
message="No products found for analysis",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=0,
|
||||
total_insights_generated=0,
|
||||
total_insights_posted=0,
|
||||
insights_by_product={},
|
||||
errors=["No products found"]
|
||||
)
|
||||
|
||||
# Initialize sales client to fetch historical data
|
||||
sales_client = SalesServiceClient(config=settings, calling_service_name="forecasting")
|
||||
|
||||
# Calculate date range
|
||||
end_date = datetime.utcnow()
|
||||
start_date = end_date - timedelta(days=request_data.lookback_days)
|
||||
|
||||
# Process each product
|
||||
total_insights_generated = 0
|
||||
total_insights_posted = 0
|
||||
insights_by_product = {}
|
||||
errors = []
|
||||
|
||||
for product in products:
|
||||
try:
|
||||
product_id = str(product['id'])
|
||||
product_name = product.get('name', 'Unknown')
|
||||
logger.info(f"Analyzing product {product_name} ({product_id})")
|
||||
|
||||
# Fetch sales data for product
|
||||
sales_data = await sales_client.get_sales_data(
|
||||
tenant_id=tenant_id,
|
||||
product_id=product_id,
|
||||
start_date=start_date.strftime('%Y-%m-%d'),
|
||||
end_date=end_date.strftime('%Y-%m-%d')
|
||||
)
|
||||
|
||||
if not sales_data:
|
||||
logger.warning(f"No sales data for product {product_id}")
|
||||
continue
|
||||
|
||||
# Convert to DataFrame
|
||||
sales_df = pd.DataFrame(sales_data)
|
||||
|
||||
if len(sales_df) < 30: # Minimum for demand analysis
|
||||
logger.warning(
|
||||
f"Insufficient data for product {product_id}: "
|
||||
f"{len(sales_df)} samples < 30 required"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check what columns are available and map to expected format
|
||||
logger.debug(f"Sales data columns for product {product_id}: {sales_df.columns.tolist()}")
|
||||
|
||||
# Map common field names to 'quantity' and 'date'
|
||||
if 'quantity' not in sales_df.columns:
|
||||
if 'total_quantity' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['total_quantity']
|
||||
elif 'amount' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['amount']
|
||||
else:
|
||||
logger.warning(f"No quantity field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
if 'date' not in sales_df.columns:
|
||||
if 'sale_date' in sales_df.columns:
|
||||
sales_df['date'] = sales_df['sale_date']
|
||||
else:
|
||||
logger.warning(f"No date field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
# Prepare sales data with required columns
|
||||
sales_df['date'] = pd.to_datetime(sales_df['date'])
|
||||
sales_df['quantity'] = sales_df['quantity'].astype(float)
|
||||
sales_df['day_of_week'] = sales_df['date'].dt.dayofweek
|
||||
|
||||
# Run demand analysis
|
||||
results = await orchestrator.analyze_and_post_demand_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=product_id,
|
||||
sales_data=sales_df,
|
||||
forecast_horizon_days=request_data.forecast_horizon_days,
|
||||
min_history_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
# Track results
|
||||
total_insights_generated += results['insights_generated']
|
||||
total_insights_posted += results['insights_posted']
|
||||
insights_by_product[product_id] = {
|
||||
'product_name': product_name,
|
||||
'insights_posted': results['insights_posted'],
|
||||
'trend_analysis': results.get('trend_analysis', {})
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Product {product_id} demand analysis complete",
|
||||
insights_posted=results['insights_posted']
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error analyzing product {product_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
errors.append(error_msg)
|
||||
|
||||
# Close orchestrator
|
||||
await orchestrator.close()
|
||||
|
||||
# Build response
|
||||
response = DemandAnalysisResponse(
|
||||
success=total_insights_posted > 0,
|
||||
message=f"Successfully generated {total_insights_posted} insights from {len(products)} products",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(products),
|
||||
total_insights_generated=total_insights_generated,
|
||||
total_insights_posted=total_insights_posted,
|
||||
insights_by_product=insights_by_product,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"ML insights demand analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
total_insights=total_insights_posted
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"ML insights demand analysis failed",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"Demand analysis failed: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
@router.post("/analyze-business-rules", response_model=BusinessRulesAnalysisResponse)
|
||||
async def trigger_business_rules_analysis(
|
||||
tenant_id: str,
|
||||
request_data: BusinessRulesAnalysisRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
Trigger business rules optimization analysis from historical sales data.
|
||||
|
||||
This endpoint:
|
||||
1. Fetches historical sales data for specified products
|
||||
2. Runs the BusinessRulesInsightsOrchestrator to analyze rules
|
||||
3. Generates insights about business rule optimization
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Business rules analysis parameters
|
||||
request: FastAPI request object to access app state
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
BusinessRulesAnalysisResponse with analysis results
|
||||
"""
|
||||
logger.info(
|
||||
"ML insights business rules analysis requested",
|
||||
tenant_id=tenant_id,
|
||||
product_ids=request_data.product_ids,
|
||||
lookback_days=request_data.lookback_days
|
||||
)
|
||||
|
||||
try:
|
||||
# Import ML orchestrator and clients
|
||||
from app.ml.business_rules_insights_orchestrator import BusinessRulesInsightsOrchestrator
|
||||
from shared.clients.sales_client import SalesServiceClient
|
||||
from shared.clients.inventory_client import InventoryServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = BusinessRulesInsightsOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get products to analyze from inventory service via API
|
||||
if request_data.product_ids:
|
||||
# Fetch specific products
|
||||
products = []
|
||||
for product_id in request_data.product_ids:
|
||||
product = await inventory_client.get_ingredient_by_id(
|
||||
ingredient_id=UUID(product_id),
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
if product:
|
||||
products.append(product)
|
||||
else:
|
||||
# Fetch all products for tenant (limit to 10)
|
||||
all_products = await inventory_client.get_all_ingredients(tenant_id=tenant_id)
|
||||
products = all_products[:10] # Limit to prevent timeout
|
||||
|
||||
if not products:
|
||||
return BusinessRulesAnalysisResponse(
|
||||
success=False,
|
||||
message="No products found for analysis",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=0,
|
||||
total_insights_generated=0,
|
||||
total_insights_posted=0,
|
||||
insights_by_product={},
|
||||
errors=["No products found"]
|
||||
)
|
||||
|
||||
# Initialize sales client to fetch historical data
|
||||
sales_client = SalesServiceClient(config=settings, calling_service_name="forecasting")
|
||||
|
||||
# Calculate date range
|
||||
end_date = datetime.utcnow()
|
||||
start_date = end_date - timedelta(days=request_data.lookback_days)
|
||||
|
||||
# Process each product
|
||||
total_insights_generated = 0
|
||||
total_insights_posted = 0
|
||||
insights_by_product = {}
|
||||
errors = []
|
||||
|
||||
for product in products:
|
||||
try:
|
||||
product_id = str(product['id'])
|
||||
product_name = product.get('name', 'Unknown')
|
||||
logger.info(f"Analyzing product {product_name} ({product_id})")
|
||||
|
||||
# Fetch sales data for product
|
||||
sales_data = await sales_client.get_sales_data(
|
||||
tenant_id=tenant_id,
|
||||
product_id=product_id,
|
||||
start_date=start_date.strftime('%Y-%m-%d'),
|
||||
end_date=end_date.strftime('%Y-%m-%d')
|
||||
)
|
||||
|
||||
if not sales_data:
|
||||
logger.warning(f"No sales data for product {product_id}")
|
||||
continue
|
||||
|
||||
# Convert to DataFrame
|
||||
sales_df = pd.DataFrame(sales_data)
|
||||
|
||||
if len(sales_df) < request_data.min_samples:
|
||||
logger.warning(
|
||||
f"Insufficient data for product {product_id}: "
|
||||
f"{len(sales_df)} samples < {request_data.min_samples} required"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check what columns are available and map to expected format
|
||||
logger.debug(f"Sales data columns for product {product_id}: {sales_df.columns.tolist()}")
|
||||
|
||||
# Map common field names to 'quantity' and 'date'
|
||||
if 'quantity' not in sales_df.columns:
|
||||
if 'total_quantity' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['total_quantity']
|
||||
elif 'amount' in sales_df.columns:
|
||||
sales_df['quantity'] = sales_df['amount']
|
||||
else:
|
||||
logger.warning(f"No quantity field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
if 'date' not in sales_df.columns:
|
||||
if 'sale_date' in sales_df.columns:
|
||||
sales_df['date'] = sales_df['sale_date']
|
||||
else:
|
||||
logger.warning(f"No date field found for product {product_id}, skipping")
|
||||
continue
|
||||
|
||||
# Prepare sales data with required columns
|
||||
sales_df['date'] = pd.to_datetime(sales_df['date'])
|
||||
sales_df['quantity'] = sales_df['quantity'].astype(float)
|
||||
sales_df['day_of_week'] = sales_df['date'].dt.dayofweek
|
||||
|
||||
# Run business rules analysis
|
||||
results = await orchestrator.analyze_and_post_business_rules_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=product_id,
|
||||
sales_data=sales_df,
|
||||
min_samples=request_data.min_samples
|
||||
)
|
||||
|
||||
# Track results
|
||||
total_insights_generated += results['insights_generated']
|
||||
total_insights_posted += results['insights_posted']
|
||||
insights_by_product[product_id] = {
|
||||
'product_name': product_name,
|
||||
'insights_posted': results['insights_posted'],
|
||||
'rules_learned': len(results.get('rules', {}))
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Product {product_id} business rules analysis complete",
|
||||
insights_posted=results['insights_posted']
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error analyzing product {product_id}: {str(e)}"
|
||||
logger.error(error_msg, exc_info=True)
|
||||
errors.append(error_msg)
|
||||
|
||||
# Close orchestrator
|
||||
await orchestrator.close()
|
||||
|
||||
# Build response
|
||||
response = BusinessRulesAnalysisResponse(
|
||||
success=total_insights_posted > 0,
|
||||
message=f"Successfully generated {total_insights_posted} insights from {len(products)} products",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(products),
|
||||
total_insights_generated=total_insights_generated,
|
||||
total_insights_posted=total_insights_posted,
|
||||
insights_by_product=insights_by_product,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"ML insights business rules analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
total_insights=total_insights_posted
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"ML insights business rules analysis failed",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"Business rules analysis failed: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
@router.get("/health")
|
||||
async def ml_insights_health():
|
||||
"""Health check for ML insights endpoints"""
|
||||
@@ -285,6 +762,8 @@ async def ml_insights_health():
|
||||
"status": "healthy",
|
||||
"service": "forecasting-ml-insights",
|
||||
"endpoints": [
|
||||
"POST /ml/insights/generate-rules"
|
||||
"POST /ml/insights/generate-rules",
|
||||
"POST /ml/insights/analyze-demand",
|
||||
"POST /ml/insights/analyze-business-rules"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -137,6 +137,9 @@ class ForecastingService(StandardFastAPIService):
|
||||
else:
|
||||
self.logger.error("Event publisher not initialized, alert service unavailable")
|
||||
|
||||
# Store the event publisher in app state for internal API access
|
||||
app.state.event_publisher = self.event_publisher
|
||||
|
||||
|
||||
async def on_shutdown(self, app: FastAPI):
|
||||
"""Custom shutdown logic for forecasting service"""
|
||||
|
||||
@@ -0,0 +1,393 @@
|
||||
"""
|
||||
Business Rules Insights Orchestrator
|
||||
Coordinates business rules optimization and insight posting
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from typing import Dict, List, Any, Optional
|
||||
import structlog
|
||||
from datetime import datetime
|
||||
from uuid import UUID
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.dynamic_rules_engine import DynamicRulesEngine
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class BusinessRulesInsightsOrchestrator:
|
||||
"""
|
||||
Orchestrates business rules analysis and insight generation workflow.
|
||||
|
||||
Workflow:
|
||||
1. Analyze dynamic business rule performance
|
||||
2. Generate insights for rule optimization
|
||||
3. Post insights to AI Insights Service
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide rule optimization for forecasting
|
||||
6. Track rule effectiveness and improvements
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.rules_engine = DynamicRulesEngine()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def analyze_and_post_business_rules_insights(
|
||||
self,
|
||||
tenant_id: str,
|
||||
inventory_product_id: str,
|
||||
sales_data: pd.DataFrame,
|
||||
min_samples: int = 10
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Complete workflow: Analyze business rules and post insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
sales_data: Historical sales data
|
||||
min_samples: Minimum samples for rule analysis
|
||||
|
||||
Returns:
|
||||
Workflow results with analysis and posted insights
|
||||
"""
|
||||
logger.info(
|
||||
"Starting business rules analysis workflow",
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
samples=len(sales_data)
|
||||
)
|
||||
|
||||
# Step 1: Learn and analyze rules
|
||||
rules_results = await self.rules_engine.learn_all_rules(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
external_data=None,
|
||||
min_samples=min_samples
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Business rules analysis complete",
|
||||
insights_generated=len(rules_results.get('insights', [])),
|
||||
rules_learned=len(rules_results.get('rules', {}))
|
||||
)
|
||||
|
||||
# Step 2: Enrich insights with tenant_id and product context
|
||||
enriched_insights = self._enrich_insights(
|
||||
rules_results.get('insights', []),
|
||||
tenant_id,
|
||||
inventory_product_id
|
||||
)
|
||||
|
||||
# Step 3: Post insights to AI Insights Service
|
||||
if enriched_insights:
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_insights
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Business rules insights posted to AI Insights Service",
|
||||
inventory_product_id=inventory_product_id,
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
'learned_at': rules_results['learned_at'],
|
||||
'rules': rules_results.get('rules', {}),
|
||||
'insights_generated': len(enriched_insights),
|
||||
'insights_posted': post_results['successful'],
|
||||
'insights_failed': post_results['failed'],
|
||||
'created_insights': post_results.get('created_insights', [])
|
||||
}
|
||||
|
||||
def _enrich_insights(
|
||||
self,
|
||||
insights: List[Dict[str, Any]],
|
||||
tenant_id: str,
|
||||
inventory_product_id: str
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Enrich insights with required fields for AI Insights Service.
|
||||
|
||||
Args:
|
||||
insights: Raw insights from rules engine
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Enriched insights ready for posting
|
||||
"""
|
||||
enriched = []
|
||||
|
||||
for insight in insights:
|
||||
# Add required tenant_id
|
||||
enriched_insight = insight.copy()
|
||||
enriched_insight['tenant_id'] = tenant_id
|
||||
|
||||
# Add product context to metrics
|
||||
if 'metrics_json' not in enriched_insight:
|
||||
enriched_insight['metrics_json'] = {}
|
||||
|
||||
enriched_insight['metrics_json']['inventory_product_id'] = inventory_product_id
|
||||
|
||||
# Add source metadata
|
||||
enriched_insight['source_service'] = 'forecasting'
|
||||
enriched_insight['source_model'] = 'dynamic_rules_engine'
|
||||
enriched_insight['detected_at'] = datetime.utcnow().isoformat()
|
||||
|
||||
enriched.append(enriched_insight)
|
||||
|
||||
return enriched
|
||||
|
||||
async def analyze_all_business_rules(
|
||||
self,
|
||||
tenant_id: str,
|
||||
products_data: Dict[str, pd.DataFrame],
|
||||
min_samples: int = 10
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze all products for business rules optimization and generate comparative insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
products_data: Dict of {inventory_product_id: sales_data DataFrame}
|
||||
min_samples: Minimum samples for rule analysis
|
||||
|
||||
Returns:
|
||||
Comprehensive analysis with rule optimization insights
|
||||
"""
|
||||
logger.info(
|
||||
"Analyzing business rules for all products",
|
||||
tenant_id=tenant_id,
|
||||
products=len(products_data)
|
||||
)
|
||||
|
||||
all_results = []
|
||||
total_insights_posted = 0
|
||||
|
||||
# Analyze each product
|
||||
for inventory_product_id, sales_data in products_data.items():
|
||||
try:
|
||||
results = await self.analyze_and_post_business_rules_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
min_samples=min_samples
|
||||
)
|
||||
|
||||
all_results.append(results)
|
||||
total_insights_posted += results['insights_posted']
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error analyzing business rules for product",
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
# Generate summary insight
|
||||
if total_insights_posted > 0:
|
||||
summary_insight = self._generate_portfolio_summary_insight(
|
||||
tenant_id, all_results
|
||||
)
|
||||
|
||||
if summary_insight:
|
||||
enriched_summary = self._enrich_insights(
|
||||
[summary_insight], tenant_id, 'all_products'
|
||||
)
|
||||
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_summary
|
||||
)
|
||||
|
||||
total_insights_posted += post_results['successful']
|
||||
|
||||
logger.info(
|
||||
"All business rules analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(all_results),
|
||||
total_insights_posted=total_insights_posted
|
||||
)
|
||||
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'analyzed_at': datetime.utcnow().isoformat(),
|
||||
'products_analyzed': len(all_results),
|
||||
'product_results': all_results,
|
||||
'total_insights_posted': total_insights_posted
|
||||
}
|
||||
|
||||
def _generate_portfolio_summary_insight(
|
||||
self,
|
||||
tenant_id: str,
|
||||
all_results: List[Dict[str, Any]]
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Generate portfolio-level business rules summary insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
all_results: All product analysis results
|
||||
|
||||
Returns:
|
||||
Summary insight or None
|
||||
"""
|
||||
if not all_results:
|
||||
return None
|
||||
|
||||
# Calculate summary statistics
|
||||
total_products = len(all_results)
|
||||
total_rules = sum(len(r.get('rules', {})) for r in all_results)
|
||||
|
||||
# Count products with significant rule improvements
|
||||
significant_improvements = sum(1 for r in all_results
|
||||
if any('improvement' in str(v).lower() for v in r.get('rules', {}).values()))
|
||||
|
||||
return {
|
||||
'type': 'recommendation',
|
||||
'priority': 'high' if significant_improvements > total_products * 0.3 else 'medium',
|
||||
'category': 'forecasting',
|
||||
'title': f'Business Rule Optimization: {total_products} Products Analyzed',
|
||||
'description': f'Learned {total_rules} dynamic rules across {total_products} products. Identified {significant_improvements} products with significant rule improvements.',
|
||||
'impact_type': 'operational_efficiency',
|
||||
'impact_value': total_rules,
|
||||
'impact_unit': 'rules',
|
||||
'confidence': 80,
|
||||
'metrics_json': {
|
||||
'total_products': total_products,
|
||||
'total_rules': total_rules,
|
||||
'significant_improvements': significant_improvements,
|
||||
'rules_per_product': round(total_rules / total_products, 2)
|
||||
},
|
||||
'actionable': True,
|
||||
'recommendation_actions': [
|
||||
{
|
||||
'label': 'Review Learned Rules',
|
||||
'action': 'review_business_rules',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
},
|
||||
{
|
||||
'label': 'Implement Optimized Rules',
|
||||
'action': 'implement_business_rules',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
}
|
||||
],
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
async def get_learned_rules(
|
||||
self,
|
||||
inventory_product_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached learned rules for a product.
|
||||
|
||||
Args:
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Learned rules or None if not analyzed
|
||||
"""
|
||||
return self.rules_engine.get_all_rules(inventory_product_id)
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for business rules insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_business_rule',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
403
services/forecasting/app/ml/demand_insights_orchestrator.py
Normal file
403
services/forecasting/app/ml/demand_insights_orchestrator.py
Normal file
@@ -0,0 +1,403 @@
|
||||
"""
|
||||
Demand Insights Orchestrator
|
||||
Coordinates demand forecasting analysis and insight posting
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from typing import Dict, List, Any, Optional
|
||||
import structlog
|
||||
from datetime import datetime
|
||||
from uuid import UUID
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.predictor import BakeryForecaster
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class DemandInsightsOrchestrator:
|
||||
"""
|
||||
Orchestrates demand forecasting analysis and insight generation workflow.
|
||||
|
||||
Workflow:
|
||||
1. Analyze historical demand patterns from sales data
|
||||
2. Generate insights for demand optimization
|
||||
3. Post insights to AI Insights Service
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide demand pattern analysis for forecasting
|
||||
6. Track demand forecasting performance
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.forecaster = BakeryForecaster()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def analyze_and_post_demand_insights(
|
||||
self,
|
||||
tenant_id: str,
|
||||
inventory_product_id: str,
|
||||
sales_data: pd.DataFrame,
|
||||
forecast_horizon_days: int = 30,
|
||||
min_history_days: int = 90
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Complete workflow: Analyze demand and post insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
sales_data: Historical sales data
|
||||
forecast_horizon_days: Days to forecast ahead
|
||||
min_history_days: Minimum days of history required
|
||||
|
||||
Returns:
|
||||
Workflow results with analysis and posted insights
|
||||
"""
|
||||
logger.info(
|
||||
"Starting demand forecasting analysis workflow",
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
history_days=len(sales_data)
|
||||
)
|
||||
|
||||
# Step 1: Analyze demand patterns
|
||||
analysis_results = await self.forecaster.analyze_demand_patterns(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
forecast_horizon_days=forecast_horizon_days,
|
||||
min_history_days=min_history_days
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Demand analysis complete",
|
||||
inventory_product_id=inventory_product_id,
|
||||
insights_generated=len(analysis_results.get('insights', []))
|
||||
)
|
||||
|
||||
# Step 2: Enrich insights with tenant_id and product context
|
||||
enriched_insights = self._enrich_insights(
|
||||
analysis_results.get('insights', []),
|
||||
tenant_id,
|
||||
inventory_product_id
|
||||
)
|
||||
|
||||
# Step 3: Post insights to AI Insights Service
|
||||
if enriched_insights:
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_insights
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Demand insights posted to AI Insights Service",
|
||||
inventory_product_id=inventory_product_id,
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
'analyzed_at': analysis_results['analyzed_at'],
|
||||
'history_days': analysis_results['history_days'],
|
||||
'demand_patterns': analysis_results.get('patterns', {}),
|
||||
'trend_analysis': analysis_results.get('trend_analysis', {}),
|
||||
'seasonal_factors': analysis_results.get('seasonal_factors', {}),
|
||||
'insights_generated': len(enriched_insights),
|
||||
'insights_posted': post_results['successful'],
|
||||
'insights_failed': post_results['failed'],
|
||||
'created_insights': post_results.get('created_insights', [])
|
||||
}
|
||||
|
||||
def _enrich_insights(
|
||||
self,
|
||||
insights: List[Dict[str, Any]],
|
||||
tenant_id: str,
|
||||
inventory_product_id: str
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Enrich insights with required fields for AI Insights Service.
|
||||
|
||||
Args:
|
||||
insights: Raw insights from forecaster
|
||||
tenant_id: Tenant identifier
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Enriched insights ready for posting
|
||||
"""
|
||||
enriched = []
|
||||
|
||||
for insight in insights:
|
||||
# Add required tenant_id
|
||||
enriched_insight = insight.copy()
|
||||
enriched_insight['tenant_id'] = tenant_id
|
||||
|
||||
# Add product context to metrics
|
||||
if 'metrics_json' not in enriched_insight:
|
||||
enriched_insight['metrics_json'] = {}
|
||||
|
||||
enriched_insight['metrics_json']['inventory_product_id'] = inventory_product_id
|
||||
|
||||
# Add source metadata
|
||||
enriched_insight['source_service'] = 'forecasting'
|
||||
enriched_insight['source_model'] = 'demand_analyzer'
|
||||
enriched_insight['detected_at'] = datetime.utcnow().isoformat()
|
||||
|
||||
enriched.append(enriched_insight)
|
||||
|
||||
return enriched
|
||||
|
||||
async def analyze_all_products(
|
||||
self,
|
||||
tenant_id: str,
|
||||
products_data: Dict[str, pd.DataFrame],
|
||||
forecast_horizon_days: int = 30,
|
||||
min_history_days: int = 90
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze all products for a tenant and generate comparative insights.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
products_data: Dict of {inventory_product_id: sales_data DataFrame}
|
||||
forecast_horizon_days: Days to forecast
|
||||
min_history_days: Minimum history required
|
||||
|
||||
Returns:
|
||||
Comprehensive analysis with product comparison
|
||||
"""
|
||||
logger.info(
|
||||
"Analyzing all products for tenant",
|
||||
tenant_id=tenant_id,
|
||||
products=len(products_data)
|
||||
)
|
||||
|
||||
all_results = []
|
||||
total_insights_posted = 0
|
||||
|
||||
# Analyze each product
|
||||
for inventory_product_id, sales_data in products_data.items():
|
||||
try:
|
||||
results = await self.analyze_and_post_demand_insights(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_id=inventory_product_id,
|
||||
sales_data=sales_data,
|
||||
forecast_horizon_days=forecast_horizon_days,
|
||||
min_history_days=min_history_days
|
||||
)
|
||||
|
||||
all_results.append(results)
|
||||
total_insights_posted += results['insights_posted']
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error analyzing product",
|
||||
inventory_product_id=inventory_product_id,
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
# Generate summary insight
|
||||
if total_insights_posted > 0:
|
||||
summary_insight = self._generate_portfolio_summary_insight(
|
||||
tenant_id, all_results
|
||||
)
|
||||
|
||||
if summary_insight:
|
||||
enriched_summary = self._enrich_insights(
|
||||
[summary_insight], tenant_id, 'all_products'
|
||||
)
|
||||
|
||||
post_results = await self.ai_insights_client.create_insights_bulk(
|
||||
tenant_id=UUID(tenant_id),
|
||||
insights=enriched_summary
|
||||
)
|
||||
|
||||
total_insights_posted += post_results['successful']
|
||||
|
||||
logger.info(
|
||||
"All products analysis complete",
|
||||
tenant_id=tenant_id,
|
||||
products_analyzed=len(all_results),
|
||||
total_insights_posted=total_insights_posted
|
||||
)
|
||||
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'analyzed_at': datetime.utcnow().isoformat(),
|
||||
'products_analyzed': len(all_results),
|
||||
'product_results': all_results,
|
||||
'total_insights_posted': total_insights_posted
|
||||
}
|
||||
|
||||
def _generate_portfolio_summary_insight(
|
||||
self,
|
||||
tenant_id: str,
|
||||
all_results: List[Dict[str, Any]]
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Generate portfolio-level summary insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
all_results: All product analysis results
|
||||
|
||||
Returns:
|
||||
Summary insight or None
|
||||
"""
|
||||
if not all_results:
|
||||
return None
|
||||
|
||||
# Calculate summary statistics
|
||||
total_products = len(all_results)
|
||||
high_demand_products = sum(1 for r in all_results if r.get('trend_analysis', {}).get('is_increasing', False))
|
||||
|
||||
avg_seasonal_factor = sum(
|
||||
r.get('seasonal_factors', {}).get('peak_ratio', 1.0)
|
||||
for r in all_results
|
||||
if r.get('seasonal_factors', {}).get('peak_ratio')
|
||||
) / max(1, len(all_results))
|
||||
|
||||
return {
|
||||
'type': 'recommendation',
|
||||
'priority': 'medium' if high_demand_products > total_products * 0.5 else 'low',
|
||||
'category': 'forecasting',
|
||||
'title': f'Demand Pattern Summary: {total_products} Products Analyzed',
|
||||
'description': f'Detected {high_demand_products} products with increasing demand trends. Average seasonal peak ratio: {avg_seasonal_factor:.2f}x.',
|
||||
'impact_type': 'demand_optimization',
|
||||
'impact_value': high_demand_products,
|
||||
'impact_unit': 'products',
|
||||
'confidence': 75,
|
||||
'metrics_json': {
|
||||
'total_products': total_products,
|
||||
'high_demand_products': high_demand_products,
|
||||
'avg_seasonal_factor': round(avg_seasonal_factor, 2),
|
||||
'trend_strength': 'strong' if high_demand_products > total_products * 0.7 else 'moderate'
|
||||
},
|
||||
'actionable': True,
|
||||
'recommendation_actions': [
|
||||
{
|
||||
'label': 'Review Production Schedule',
|
||||
'action': 'review_production_schedule',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
},
|
||||
{
|
||||
'label': 'Adjust Inventory Levels',
|
||||
'action': 'adjust_inventory_levels',
|
||||
'params': {'tenant_id': tenant_id}
|
||||
}
|
||||
],
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'demand_analyzer'
|
||||
}
|
||||
|
||||
async def get_demand_patterns(
|
||||
self,
|
||||
inventory_product_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Get cached demand patterns for a product.
|
||||
|
||||
Args:
|
||||
inventory_product_id: Product identifier
|
||||
|
||||
Returns:
|
||||
Demand patterns or None if not analyzed
|
||||
"""
|
||||
return self.forecaster.get_cached_demand_patterns(inventory_product_id)
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for demand insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'demand_analyzer'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_demand_forecast',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published demand insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish demand insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
@@ -11,6 +11,7 @@ from uuid import UUID
|
||||
|
||||
from app.ml.dynamic_rules_engine import DynamicRulesEngine
|
||||
from app.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
@@ -29,10 +30,12 @@ class RulesOrchestrator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.rules_engine = DynamicRulesEngine()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def learn_and_post_rules(
|
||||
self,
|
||||
@@ -100,7 +103,17 @@ class RulesOrchestrator:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post")
|
||||
|
||||
# Step 4: Return comprehensive results
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = {'inventory_product_id': inventory_product_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
@@ -229,6 +242,71 @@ class RulesOrchestrator:
|
||||
|
||||
return results
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, product_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
product_context: Additional context about the product
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for business rules insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'inventory_product_id': product_context.get('inventory_product_id') if product_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'forecasting',
|
||||
'source_model': 'dynamic_rules_engine'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_business_rule',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish business rules insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
"""Close HTTP client connections."""
|
||||
await self.ai_insights_client.close()
|
||||
|
||||
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Demand pattern analysis
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -71,6 +71,7 @@ class SafetyStockOptimizationResponse(BaseModel):
|
||||
async def trigger_safety_stock_optimization(
|
||||
tenant_id: str,
|
||||
request_data: SafetyStockOptimizationRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -81,10 +82,12 @@ async def trigger_safety_stock_optimization(
|
||||
2. Runs the SafetyStockInsightsOrchestrator to optimize levels
|
||||
3. Generates insights about safety stock recommendations
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes recommendation events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Optimization parameters
|
||||
request: FastAPI request (for app state access)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
@@ -103,8 +106,13 @@ async def trigger_safety_stock_optimization(
|
||||
from app.models.inventory import Ingredient
|
||||
from sqlalchemy import select
|
||||
|
||||
# Get event publisher from app state (if available)
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None) if hasattr(request, 'app') else None
|
||||
|
||||
# Initialize orchestrator
|
||||
orchestrator = SafetyStockInsightsOrchestrator()
|
||||
orchestrator = SafetyStockInsightsOrchestrator(
|
||||
event_publisher=event_publisher
|
||||
)
|
||||
|
||||
# Get products to optimize
|
||||
if request_data.product_ids:
|
||||
@@ -378,6 +386,7 @@ async def generate_safety_stock_insights_internal(
|
||||
result = await trigger_safety_stock_optimization(
|
||||
tenant_id=tenant_id,
|
||||
request_data=request_data,
|
||||
request=request,
|
||||
db=db
|
||||
)
|
||||
|
||||
|
||||
@@ -126,6 +126,7 @@ class InventoryService(StandardFastAPIService):
|
||||
# Store services in app state
|
||||
app.state.alert_service = alert_service
|
||||
app.state.inventory_scheduler = inventory_scheduler # Store scheduler for manual triggering
|
||||
app.state.event_publisher = self.event_publisher # Store event publisher for ML insights
|
||||
else:
|
||||
self.logger.error("Event publisher not initialized, alert service unavailable")
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.safety_stock_optimizer import SafetyStockOptimizer
|
||||
|
||||
@@ -28,15 +29,18 @@ class SafetyStockInsightsOrchestrator:
|
||||
1. Optimize safety stock from demand history and cost parameters
|
||||
2. Generate insights comparing optimal vs hardcoded approach
|
||||
3. Post insights to AI Insights Service
|
||||
4. Provide optimized safety stock levels for inventory management
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide optimized safety stock levels for inventory management
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.optimizer = SafetyStockOptimizer()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def optimize_and_post_insights(
|
||||
self,
|
||||
@@ -109,6 +113,17 @@ class SafetyStockInsightsOrchestrator:
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
product_context = product_characteristics.copy() if product_characteristics else {}
|
||||
product_context['inventory_product_id'] = inventory_product_id
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
product_context=product_context
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for product", inventory_product_id=inventory_product_id)
|
||||
@@ -167,6 +182,84 @@ class SafetyStockInsightsOrchestrator:
|
||||
|
||||
return enriched
|
||||
|
||||
async def _publish_insight_events(
|
||||
self,
|
||||
tenant_id: str,
|
||||
insights: List[Dict[str, Any]],
|
||||
product_context: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""
|
||||
Publish recommendation events to RabbitMQ for each insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights (with insight_id from AI Insights Service)
|
||||
product_context: Optional product context (name, id, etc.)
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("Event publisher not configured, skipping event publication")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
try:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
if priority == 'urgent' or confidence >= 90:
|
||||
severity = 'urgent'
|
||||
elif priority == 'high' or confidence >= 70:
|
||||
severity = 'high'
|
||||
elif priority == 'medium' or confidence >= 50:
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Build event metadata
|
||||
event_metadata = {
|
||||
'insight_id': insight.get('id'),
|
||||
'insight_type': insight.get('insight_type'),
|
||||
'inventory_product_id': insight.get('metrics_json', {}).get('inventory_product_id'),
|
||||
'ingredient_name': product_context.get('ingredient_name') if product_context else None,
|
||||
'suggested_safety_stock': insight.get('metrics_json', {}).get('suggested_safety_stock'),
|
||||
'current_safety_stock': insight.get('metrics_json', {}).get('current_safety_stock'),
|
||||
'estimated_savings': insight.get('impact_value'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation'),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'source_service': 'inventory',
|
||||
'source_model': 'safety_stock_optimizer'
|
||||
}
|
||||
|
||||
# Remove None values
|
||||
event_metadata = {k: v for k, v in event_metadata.items() if v is not None}
|
||||
|
||||
# Publish recommendation event
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_safety_stock_optimization',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_metadata
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Published safety stock insight recommendation event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
insight_type=insight.get('insight_type'),
|
||||
severity=severity
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
# Don't raise - we don't want to fail the whole workflow if event publishing fails
|
||||
|
||||
async def optimize_all_products(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -92,8 +92,8 @@ async def load_fixture_data_for_tenant(
|
||||
return 0
|
||||
|
||||
# Parse and adjust dates from fixture to reference_time
|
||||
base_started_at = resolve_time_marker(orchestration_run_data.get("started_at"))
|
||||
base_completed_at = resolve_time_marker(orchestration_run_data.get("completed_at"))
|
||||
base_started_at = resolve_time_marker(orchestration_run_data.get("started_at"), reference_time)
|
||||
base_completed_at = resolve_time_marker(orchestration_run_data.get("completed_at"), reference_time)
|
||||
|
||||
# Adjust dates to make them appear recent relative to session creation
|
||||
started_at = adjust_date_for_demo(base_started_at, reference_time) if base_started_at else reference_time - timedelta(hours=2)
|
||||
|
||||
@@ -6,7 +6,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Price forecasting and timing recommendations
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -108,6 +108,7 @@ class PriceForecastResponse(BaseModel):
|
||||
async def trigger_supplier_analysis(
|
||||
tenant_id: str,
|
||||
request_data: SupplierAnalysisRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -142,8 +143,11 @@ async def trigger_supplier_analysis(
|
||||
from app.core.config import settings
|
||||
from sqlalchemy import select
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and clients
|
||||
orchestrator = SupplierInsightsOrchestrator()
|
||||
orchestrator = SupplierInsightsOrchestrator(event_publisher=event_publisher)
|
||||
suppliers_client = SuppliersServiceClient(settings)
|
||||
|
||||
# Get suppliers to analyze from suppliers service via API
|
||||
@@ -319,6 +323,7 @@ async def trigger_supplier_analysis(
|
||||
async def trigger_price_forecasting(
|
||||
tenant_id: str,
|
||||
request_data: PriceForecastRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -353,8 +358,11 @@ async def trigger_price_forecasting(
|
||||
from app.core.config import settings
|
||||
from sqlalchemy import select
|
||||
|
||||
# Get event publisher from app state
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None)
|
||||
|
||||
# Initialize orchestrator and inventory client
|
||||
orchestrator = PriceInsightsOrchestrator()
|
||||
orchestrator = PriceInsightsOrchestrator(event_publisher=event_publisher)
|
||||
inventory_client = InventoryServiceClient(settings)
|
||||
|
||||
# Get ingredients to forecast from inventory service via API
|
||||
@@ -594,6 +602,7 @@ async def generate_price_insights_internal(
|
||||
result = await trigger_price_forecasting(
|
||||
tenant_id=tenant_id,
|
||||
request_data=request_data,
|
||||
request=request,
|
||||
db=db
|
||||
)
|
||||
|
||||
|
||||
@@ -107,6 +107,7 @@ class ProcurementService(StandardFastAPIService):
|
||||
|
||||
# Store in app state for internal API access
|
||||
app.state.delivery_tracking_service = self.delivery_tracking_service
|
||||
app.state.event_publisher = self.event_publisher
|
||||
|
||||
# Start overdue PO scheduler
|
||||
if self.rabbitmq_client and self.rabbitmq_client.connected:
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.price_forecaster import PriceForecaster
|
||||
|
||||
@@ -33,10 +34,12 @@ class PriceInsightsOrchestrator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.forecaster = PriceForecaster()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def forecast_and_post_insights(
|
||||
self,
|
||||
@@ -107,7 +110,17 @@ class PriceInsightsOrchestrator:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for ingredient", ingredient_id=ingredient_id)
|
||||
|
||||
# Step 4: Return comprehensive results
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
ingredient_context = {'ingredient_id': ingredient_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
ingredient_context=ingredient_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'ingredient_id': ingredient_id,
|
||||
@@ -261,6 +274,71 @@ class PriceInsightsOrchestrator:
|
||||
'bulk_opportunity_count': bulk_opportunity_count
|
||||
}
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, ingredient_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
ingredient_context: Additional context about the ingredient
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for price insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'ingredient_id': ingredient_context.get('ingredient_id') if ingredient_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'procurement',
|
||||
'source_model': 'price_forecaster'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_price_forecast',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published price insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish price insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
def _generate_portfolio_summary_insight(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.supplier_performance_predictor import SupplierPerformancePredictor
|
||||
|
||||
@@ -28,16 +29,19 @@ class SupplierInsightsOrchestrator:
|
||||
1. Analyze supplier performance from historical orders
|
||||
2. Generate insights for procurement risk management
|
||||
3. Post insights to AI Insights Service
|
||||
4. Provide supplier comparison and recommendations
|
||||
5. Track supplier reliability scores
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide supplier comparison and recommendations
|
||||
6. Track supplier reliability scores
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.predictor = SupplierPerformancePredictor()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def analyze_and_post_supplier_insights(
|
||||
self,
|
||||
@@ -105,7 +109,17 @@ class SupplierInsightsOrchestrator:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for supplier", supplier_id=supplier_id)
|
||||
|
||||
# Step 4: Return comprehensive results
|
||||
# Step 4: Publish insight events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
supplier_context = {'supplier_id': supplier_id}
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
supplier_context=supplier_context
|
||||
)
|
||||
|
||||
# Step 5: Return comprehensive results
|
||||
return {
|
||||
'tenant_id': tenant_id,
|
||||
'supplier_id': supplier_id,
|
||||
@@ -159,6 +173,71 @@ class SupplierInsightsOrchestrator:
|
||||
|
||||
return enriched
|
||||
|
||||
async def _publish_insight_events(self, tenant_id, insights, supplier_context=None):
|
||||
"""
|
||||
Publish insight events to RabbitMQ for alert processing.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights
|
||||
supplier_context: Additional context about the supplier
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("No event publisher available for supplier insights")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
# Map priority to severity, with confidence as tiebreaker
|
||||
if priority == 'critical' or (priority == 'high' and confidence >= 70):
|
||||
severity = 'high'
|
||||
elif priority == 'high' or (priority == 'medium' and confidence >= 80):
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Prepare the event data
|
||||
event_data = {
|
||||
'insight_id': insight.get('id'),
|
||||
'type': insight.get('type'),
|
||||
'title': insight.get('title'),
|
||||
'description': insight.get('description'),
|
||||
'category': insight.get('category'),
|
||||
'priority': insight.get('priority'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation_actions', []),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'supplier_id': supplier_context.get('supplier_id') if supplier_context else None,
|
||||
'timestamp': insight.get('detected_at', datetime.utcnow().isoformat()),
|
||||
'source_service': 'procurement',
|
||||
'source_model': 'supplier_performance_predictor'
|
||||
}
|
||||
|
||||
try:
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_supplier_recommendation',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_data
|
||||
)
|
||||
logger.info(
|
||||
"Published supplier insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
severity=severity
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish supplier insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e)
|
||||
)
|
||||
|
||||
async def analyze_all_suppliers(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -358,13 +358,66 @@ async def clone_demo_data(
|
||||
except KeyError:
|
||||
process_stage_value = None
|
||||
|
||||
# Transform foreign key references (product_id, recipe_id, order_id, forecast_id)
|
||||
transformed_product_id = None
|
||||
if batch_data.get('product_id'):
|
||||
try:
|
||||
transformed_product_id = str(transform_id(batch_data['product_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform product_id",
|
||||
product_id=batch_data.get('product_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_recipe_id = None
|
||||
if batch_data.get('recipe_id'):
|
||||
try:
|
||||
transformed_recipe_id = str(transform_id(batch_data['recipe_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform recipe_id",
|
||||
recipe_id=batch_data.get('recipe_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_order_id = None
|
||||
if batch_data.get('order_id'):
|
||||
try:
|
||||
transformed_order_id = str(transform_id(batch_data['order_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform order_id",
|
||||
order_id=batch_data.get('order_id'),
|
||||
error=str(e))
|
||||
|
||||
transformed_forecast_id = None
|
||||
if batch_data.get('forecast_id'):
|
||||
try:
|
||||
transformed_forecast_id = str(transform_id(batch_data['forecast_id'], virtual_uuid))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform forecast_id",
|
||||
forecast_id=batch_data.get('forecast_id'),
|
||||
error=str(e))
|
||||
|
||||
# Transform equipment_used array
|
||||
transformed_equipment = []
|
||||
if batch_data.get('equipment_used'):
|
||||
for equip_id in batch_data['equipment_used']:
|
||||
try:
|
||||
transformed_equipment.append(str(transform_id(equip_id, virtual_uuid)))
|
||||
except (ValueError, Exception) as e:
|
||||
logger.warning("Failed to transform equipment_id",
|
||||
equipment_id=equip_id,
|
||||
error=str(e))
|
||||
|
||||
# staff_assigned contains user IDs - these should NOT be transformed
|
||||
# because they reference actual user accounts which are NOT cloned
|
||||
# The demo uses the same user accounts across all virtual tenants
|
||||
staff_assigned = batch_data.get('staff_assigned', [])
|
||||
|
||||
new_batch = ProductionBatch(
|
||||
id=str(transformed_id),
|
||||
tenant_id=virtual_uuid,
|
||||
batch_number=f"{session_id[:8]}-{batch_data.get('batch_number', f'BATCH-{uuid.uuid4().hex[:8].upper()}')}",
|
||||
product_id=batch_data.get('product_id'),
|
||||
product_id=transformed_product_id,
|
||||
product_name=batch_data.get('product_name'),
|
||||
recipe_id=batch_data.get('recipe_id'),
|
||||
recipe_id=transformed_recipe_id,
|
||||
planned_start_time=adjusted_planned_start,
|
||||
planned_end_time=adjusted_planned_end,
|
||||
planned_quantity=batch_data.get('planned_quantity'),
|
||||
@@ -389,11 +442,11 @@ async def clone_demo_data(
|
||||
waste_quantity=batch_data.get('waste_quantity'),
|
||||
defect_quantity=batch_data.get('defect_quantity'),
|
||||
waste_defect_type=batch_data.get('waste_defect_type'),
|
||||
equipment_used=batch_data.get('equipment_used'),
|
||||
staff_assigned=batch_data.get('staff_assigned'),
|
||||
equipment_used=transformed_equipment,
|
||||
staff_assigned=staff_assigned,
|
||||
station_id=batch_data.get('station_id'),
|
||||
order_id=batch_data.get('order_id'),
|
||||
forecast_id=batch_data.get('forecast_id'),
|
||||
order_id=transformed_order_id,
|
||||
forecast_id=transformed_forecast_id,
|
||||
is_rush_order=batch_data.get('is_rush_order', False),
|
||||
is_special_recipe=batch_data.get('is_special_recipe', False),
|
||||
is_ai_assisted=batch_data.get('is_ai_assisted', False),
|
||||
|
||||
@@ -7,7 +7,7 @@ Provides endpoints to trigger ML insight generation for:
|
||||
- Process efficiency analysis
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException, Request
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional, List
|
||||
from uuid import UUID
|
||||
@@ -71,6 +71,7 @@ class YieldPredictionResponse(BaseModel):
|
||||
async def trigger_yield_prediction(
|
||||
tenant_id: str,
|
||||
request_data: YieldPredictionRequest,
|
||||
request: Request,
|
||||
db: AsyncSession = Depends(get_db)
|
||||
):
|
||||
"""
|
||||
@@ -81,10 +82,12 @@ async def trigger_yield_prediction(
|
||||
2. Runs the YieldInsightsOrchestrator to predict yields
|
||||
3. Generates insights about yield optimization opportunities
|
||||
4. Posts insights to AI Insights Service
|
||||
5. Publishes recommendation events to RabbitMQ
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
request_data: Prediction parameters
|
||||
request: FastAPI request (for app state access)
|
||||
db: Database session
|
||||
|
||||
Returns:
|
||||
@@ -103,8 +106,13 @@ async def trigger_yield_prediction(
|
||||
from shared.clients.recipes_client import RecipesServiceClient
|
||||
from app.core.config import settings
|
||||
|
||||
# Get event publisher from app state (if available)
|
||||
event_publisher = getattr(request.app.state, 'event_publisher', None) if hasattr(request, 'app') else None
|
||||
|
||||
# Initialize orchestrator and recipes client
|
||||
orchestrator = YieldInsightsOrchestrator()
|
||||
orchestrator = YieldInsightsOrchestrator(
|
||||
event_publisher=event_publisher
|
||||
)
|
||||
recipes_client = RecipesServiceClient(settings)
|
||||
|
||||
# Get recipes to analyze from recipes service via API
|
||||
@@ -186,12 +194,18 @@ async def trigger_yield_prediction(
|
||||
continue # Skip batches without complete data
|
||||
|
||||
production_data.append({
|
||||
'production_date': batch.actual_start_time,
|
||||
'production_run_id': str(batch.id), # Required: unique identifier for each production run
|
||||
'recipe_id': str(batch.recipe_id), # Required: recipe identifier
|
||||
'started_at': batch.actual_start_time,
|
||||
'completed_at': batch.actual_end_time, # Optional but useful for duration analysis
|
||||
'batch_size': float(batch.planned_quantity), # Use planned_quantity as batch_size
|
||||
'planned_quantity': float(batch.planned_quantity),
|
||||
'actual_quantity': float(batch.actual_quantity),
|
||||
'yield_percentage': yield_pct,
|
||||
'worker_id': batch.notes or 'unknown', # Use notes field or default
|
||||
'batch_number': batch.batch_number
|
||||
'staff_assigned': batch.staff_assigned if batch.staff_assigned else ['unknown'],
|
||||
'batch_number': batch.batch_number,
|
||||
'equipment_id': batch.equipment_used[0] if batch.equipment_used and len(batch.equipment_used) > 0 else None,
|
||||
'notes': batch.quality_notes # Optional quality notes
|
||||
})
|
||||
|
||||
if not production_data:
|
||||
@@ -202,6 +216,14 @@ async def trigger_yield_prediction(
|
||||
|
||||
production_history = pd.DataFrame(production_data)
|
||||
|
||||
# Debug: Log DataFrame columns and sample data
|
||||
logger.debug(
|
||||
"Production history DataFrame created",
|
||||
recipe_id=recipe_id,
|
||||
columns=list(production_history.columns),
|
||||
sample_data=production_history.head(1).to_dict('records') if len(production_history) > 0 else None
|
||||
)
|
||||
|
||||
# Run yield analysis
|
||||
results = await orchestrator.analyze_and_post_insights(
|
||||
tenant_id=tenant_id,
|
||||
@@ -291,8 +313,6 @@ async def ml_insights_health():
|
||||
# INTERNAL ENDPOINTS (for demo-session service)
|
||||
# ================================================================
|
||||
|
||||
from fastapi import Request
|
||||
|
||||
# Create a separate router for internal endpoints to avoid the tenant prefix
|
||||
internal_router = APIRouter(
|
||||
tags=["ML Insights - Internal"]
|
||||
@@ -347,6 +367,7 @@ async def generate_yield_insights_internal(
|
||||
result = await trigger_yield_prediction(
|
||||
tenant_id=tenant_id,
|
||||
request_data=request_data,
|
||||
request=request,
|
||||
db=db
|
||||
)
|
||||
|
||||
|
||||
@@ -142,6 +142,7 @@ class ProductionService(StandardFastAPIService):
|
||||
app.state.production_alert_service = self.alert_service # Also store with this name for internal trigger
|
||||
app.state.notification_service = self.notification_service # Notification service for state change events
|
||||
app.state.production_scheduler = self.production_scheduler # Store scheduler for manual triggering
|
||||
app.state.event_publisher = self.event_publisher # Store event publisher for ML insights
|
||||
|
||||
async def on_shutdown(self, app: FastAPI):
|
||||
"""Custom shutdown logic for production service"""
|
||||
|
||||
@@ -14,6 +14,7 @@ import os
|
||||
# Add shared clients to path
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../..'))
|
||||
from shared.clients.ai_insights_client import AIInsightsClient
|
||||
from shared.messaging import UnifiedEventPublisher
|
||||
|
||||
from app.ml.yield_predictor import YieldPredictor
|
||||
|
||||
@@ -28,15 +29,18 @@ class YieldInsightsOrchestrator:
|
||||
1. Predict yield for upcoming production run or analyze historical performance
|
||||
2. Generate insights for yield optimization opportunities
|
||||
3. Post insights to AI Insights Service
|
||||
4. Provide yield predictions for production planning
|
||||
4. Publish recommendation events to RabbitMQ
|
||||
5. Provide yield predictions for production planning
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000"
|
||||
ai_insights_base_url: str = "http://ai-insights-service:8000",
|
||||
event_publisher: Optional[UnifiedEventPublisher] = None
|
||||
):
|
||||
self.predictor = YieldPredictor()
|
||||
self.ai_insights_client = AIInsightsClient(ai_insights_base_url)
|
||||
self.event_publisher = event_publisher
|
||||
|
||||
async def predict_and_post_insights(
|
||||
self,
|
||||
@@ -54,7 +58,7 @@ class YieldInsightsOrchestrator:
|
||||
recipe_id: Recipe identifier
|
||||
production_history: Historical production runs
|
||||
production_context: Upcoming production context:
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- planned_start_time
|
||||
- batch_size
|
||||
- planned_quantity
|
||||
@@ -109,6 +113,17 @@ class YieldInsightsOrchestrator:
|
||||
successful=post_results['successful'],
|
||||
failed=post_results['failed']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
recipe_context = production_context.copy() if production_context else {}
|
||||
recipe_context['recipe_id'] = recipe_id
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
recipe_context=recipe_context
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
logger.info("No insights to post for recipe", recipe_id=recipe_id)
|
||||
@@ -193,6 +208,15 @@ class YieldInsightsOrchestrator:
|
||||
total=post_results['total'],
|
||||
successful=post_results['successful']
|
||||
)
|
||||
|
||||
# Step 4: Publish recommendation events to RabbitMQ
|
||||
created_insights = post_results.get('created_insights', [])
|
||||
if created_insights:
|
||||
await self._publish_insight_events(
|
||||
tenant_id=tenant_id,
|
||||
insights=created_insights,
|
||||
recipe_context={'recipe_id': recipe_id}
|
||||
)
|
||||
else:
|
||||
post_results = {'total': 0, 'successful': 0, 'failed': 0}
|
||||
|
||||
@@ -248,6 +272,83 @@ class YieldInsightsOrchestrator:
|
||||
|
||||
return enriched
|
||||
|
||||
async def _publish_insight_events(
|
||||
self,
|
||||
tenant_id: str,
|
||||
insights: List[Dict[str, Any]],
|
||||
recipe_context: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""
|
||||
Publish recommendation events to RabbitMQ for each insight.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant identifier
|
||||
insights: List of created insights (with insight_id from AI Insights Service)
|
||||
recipe_context: Optional recipe context (name, id, etc.)
|
||||
"""
|
||||
if not self.event_publisher:
|
||||
logger.warning("Event publisher not configured, skipping event publication")
|
||||
return
|
||||
|
||||
for insight in insights:
|
||||
try:
|
||||
# Determine severity based on confidence and priority
|
||||
confidence = insight.get('confidence', 0)
|
||||
priority = insight.get('priority', 'medium')
|
||||
|
||||
if priority == 'urgent' or confidence >= 90:
|
||||
severity = 'urgent'
|
||||
elif priority == 'high' or confidence >= 70:
|
||||
severity = 'high'
|
||||
elif priority == 'medium' or confidence >= 50:
|
||||
severity = 'medium'
|
||||
else:
|
||||
severity = 'low'
|
||||
|
||||
# Build event metadata
|
||||
event_metadata = {
|
||||
'insight_id': insight.get('id'), # From AI Insights Service response
|
||||
'insight_type': insight.get('insight_type'),
|
||||
'recipe_id': insight.get('metrics_json', {}).get('recipe_id'),
|
||||
'recipe_name': recipe_context.get('recipe_name') if recipe_context else None,
|
||||
'predicted_yield': insight.get('metrics_json', {}).get('predicted_yield'),
|
||||
'confidence': confidence,
|
||||
'recommendation': insight.get('recommendation'),
|
||||
'impact_type': insight.get('impact_type'),
|
||||
'impact_value': insight.get('impact_value'),
|
||||
'source_service': 'production',
|
||||
'source_model': 'yield_predictor'
|
||||
}
|
||||
|
||||
# Remove None values
|
||||
event_metadata = {k: v for k, v in event_metadata.items() if v is not None}
|
||||
|
||||
# Publish recommendation event
|
||||
await self.event_publisher.publish_recommendation(
|
||||
event_type='ai_yield_prediction',
|
||||
tenant_id=tenant_id,
|
||||
severity=severity,
|
||||
data=event_metadata
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Published yield insight recommendation event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
insight_type=insight.get('insight_type'),
|
||||
severity=severity
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Failed to publish insight event",
|
||||
tenant_id=tenant_id,
|
||||
insight_id=insight.get('id'),
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
)
|
||||
# Don't raise - we don't want to fail the whole workflow if event publishing fails
|
||||
|
||||
async def analyze_all_recipes(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -62,14 +62,14 @@ class YieldPredictor:
|
||||
- planned_quantity
|
||||
- actual_quantity
|
||||
- yield_percentage
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- started_at
|
||||
- completed_at
|
||||
- batch_size
|
||||
- equipment_id (optional)
|
||||
- notes (optional)
|
||||
production_context: Upcoming production context:
|
||||
- worker_id
|
||||
- staff_assigned (list of staff IDs)
|
||||
- planned_start_time
|
||||
- batch_size
|
||||
- equipment_id (optional)
|
||||
@@ -212,6 +212,9 @@ class YieldPredictor:
|
||||
df['is_small_batch'] = (df['batch_size'] < df['batch_size'].quantile(0.25)).astype(int)
|
||||
|
||||
# Worker experience features (proxy: number of previous runs)
|
||||
# Extract first worker from staff_assigned list
|
||||
df['worker_id'] = df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
df = df.sort_values('started_at')
|
||||
df['worker_run_count'] = df.groupby('worker_id').cumcount() + 1
|
||||
df['worker_experience_level'] = pd.cut(
|
||||
@@ -232,6 +235,10 @@ class YieldPredictor:
|
||||
factors = {}
|
||||
|
||||
# Worker impact
|
||||
# Extract worker_id from staff_assigned for analysis
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_yields = feature_df.groupby('worker_id')['yield_percentage'].agg(['mean', 'std', 'count'])
|
||||
worker_yields = worker_yields[worker_yields['count'] >= 3] # Min 3 runs per worker
|
||||
|
||||
@@ -339,7 +346,10 @@ class YieldPredictor:
|
||||
if 'duration_hours' in feature_df.columns:
|
||||
feature_columns.append('duration_hours')
|
||||
|
||||
# Encode worker_id
|
||||
# Encode worker_id (extracted from staff_assigned)
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_encoding = {worker: idx for idx, worker in enumerate(feature_df['worker_id'].unique())}
|
||||
feature_df['worker_encoded'] = feature_df['worker_id'].map(worker_encoding)
|
||||
feature_columns.append('worker_encoded')
|
||||
@@ -420,11 +430,15 @@ class YieldPredictor:
|
||||
) -> Dict[str, Any]:
|
||||
"""Predict yield for upcoming production run."""
|
||||
# Extract context
|
||||
worker_id = production_context.get('worker_id')
|
||||
staff_assigned = production_context.get('staff_assigned', [])
|
||||
worker_id = staff_assigned[0] if isinstance(staff_assigned, list) and len(staff_assigned) > 0 else 'unknown'
|
||||
planned_start = pd.to_datetime(production_context.get('planned_start_time'))
|
||||
batch_size = production_context.get('batch_size')
|
||||
|
||||
# Get worker experience
|
||||
if 'worker_id' not in feature_df.columns:
|
||||
feature_df['worker_id'] = feature_df['staff_assigned'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else 'unknown')
|
||||
|
||||
worker_runs = feature_df[feature_df['worker_id'] == worker_id]
|
||||
worker_run_count = len(worker_runs) if len(worker_runs) > 0 else 1
|
||||
|
||||
@@ -578,7 +592,7 @@ class YieldPredictor:
|
||||
'action': 'review_production_factors',
|
||||
'params': {
|
||||
'recipe_id': recipe_id,
|
||||
'worker_id': production_context.get('worker_id')
|
||||
'worker_id': worker_id
|
||||
}
|
||||
}]
|
||||
})
|
||||
|
||||
@@ -31,7 +31,7 @@ def stable_yield_history():
|
||||
'planned_quantity': 100,
|
||||
'actual_quantity': np.random.normal(97, 1.5), # 97% avg, low variance
|
||||
'yield_percentage': np.random.normal(97, 1.5),
|
||||
'worker_id': f'worker_{i % 3}', # 3 workers
|
||||
'staff_assigned': [f'worker_{i % 3}'], # 3 workers
|
||||
'started_at': run_date,
|
||||
'completed_at': run_date + timedelta(hours=4),
|
||||
'batch_size': np.random.randint(80, 120)
|
||||
|
||||
Reference in New Issue
Block a user