Initial commit - production deployment
This commit is contained in:
507
services/training/app/repositories/training_log_repository.py
Normal file
507
services/training/app/repositories/training_log_repository.py
Normal file
@@ -0,0 +1,507 @@
|
||||
"""
|
||||
Training Log Repository
|
||||
Repository for model training log operations
|
||||
"""
|
||||
|
||||
from typing import Optional, List, Dict, Any
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy import select, and_, text, desc
|
||||
from datetime import datetime, timedelta
|
||||
import structlog
|
||||
|
||||
from .base import TrainingBaseRepository
|
||||
from app.models.training import ModelTrainingLog
|
||||
from shared.database.exceptions import DatabaseError, ValidationError
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
|
||||
class TrainingLogRepository(TrainingBaseRepository):
|
||||
"""Repository for training log operations"""
|
||||
|
||||
def __init__(self, session: AsyncSession, cache_ttl: Optional[int] = 300):
|
||||
# Training logs change frequently, shorter cache time (5 minutes)
|
||||
super().__init__(ModelTrainingLog, session, cache_ttl)
|
||||
|
||||
async def create_training_log(self, log_data: Dict[str, Any]) -> ModelTrainingLog:
|
||||
"""Create a new training log entry"""
|
||||
try:
|
||||
# Validate log data
|
||||
validation_result = self._validate_training_data(
|
||||
log_data,
|
||||
["job_id", "tenant_id", "status"]
|
||||
)
|
||||
|
||||
if not validation_result["is_valid"]:
|
||||
raise ValidationError(f"Invalid training log data: {validation_result['errors']}")
|
||||
|
||||
# Set default values
|
||||
if "progress" not in log_data:
|
||||
log_data["progress"] = 0
|
||||
if "current_step" not in log_data:
|
||||
log_data["current_step"] = "initializing"
|
||||
|
||||
# Create log entry
|
||||
log_entry = await self.create(log_data)
|
||||
|
||||
logger.info("Training log created",
|
||||
job_id=log_entry.job_id,
|
||||
tenant_id=log_entry.tenant_id,
|
||||
status=log_entry.status)
|
||||
|
||||
return log_entry
|
||||
|
||||
except ValidationError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error("Failed to create training log",
|
||||
job_id=log_data.get("job_id"),
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to create training log: {str(e)}")
|
||||
|
||||
async def get_log_by_job_id(self, job_id: str) -> Optional[ModelTrainingLog]:
|
||||
"""Get training log by job ID"""
|
||||
return await self.get_by_job_id(job_id)
|
||||
|
||||
async def update_log_progress(
|
||||
self,
|
||||
job_id: str,
|
||||
progress: int,
|
||||
current_step: str = None,
|
||||
status: str = None
|
||||
) -> Optional[ModelTrainingLog]:
|
||||
"""Update training log progress"""
|
||||
try:
|
||||
update_data = {"progress": progress, "updated_at": datetime.now()}
|
||||
|
||||
if current_step:
|
||||
update_data["current_step"] = current_step
|
||||
if status:
|
||||
update_data["status"] = status
|
||||
|
||||
log_entry = await self.get_by_job_id(job_id)
|
||||
if not log_entry:
|
||||
logger.error(f"Training log not found for job {job_id}")
|
||||
return None
|
||||
|
||||
updated_log = await self.update(log_entry.id, update_data)
|
||||
|
||||
logger.debug("Training log progress updated",
|
||||
job_id=job_id,
|
||||
progress=progress,
|
||||
step=current_step)
|
||||
|
||||
return updated_log
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to update training log progress",
|
||||
job_id=job_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to update progress: {str(e)}")
|
||||
|
||||
async def complete_training_log(
|
||||
self,
|
||||
job_id: str,
|
||||
results: Dict[str, Any] = None,
|
||||
error_message: str = None
|
||||
) -> Optional[ModelTrainingLog]:
|
||||
"""Mark training log as completed or failed"""
|
||||
try:
|
||||
status = "failed" if error_message else "completed"
|
||||
|
||||
update_data = {
|
||||
"status": status,
|
||||
"progress": 100 if status == "completed" else None,
|
||||
"end_time": datetime.now(),
|
||||
"updated_at": datetime.now()
|
||||
}
|
||||
|
||||
if results:
|
||||
update_data["results"] = results
|
||||
if error_message:
|
||||
update_data["error_message"] = error_message
|
||||
|
||||
log_entry = await self.get_by_job_id(job_id)
|
||||
if not log_entry:
|
||||
logger.error(f"Training log not found for job {job_id}")
|
||||
return None
|
||||
|
||||
updated_log = await self.update(log_entry.id, update_data)
|
||||
|
||||
logger.info("Training log completed",
|
||||
job_id=job_id,
|
||||
status=status,
|
||||
has_results=bool(results))
|
||||
|
||||
return updated_log
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to complete training log",
|
||||
job_id=job_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to complete training log: {str(e)}")
|
||||
|
||||
async def get_logs_by_tenant(
|
||||
self,
|
||||
tenant_id: str,
|
||||
status: str = None,
|
||||
skip: int = 0,
|
||||
limit: int = 100
|
||||
) -> List[ModelTrainingLog]:
|
||||
"""Get training logs for a tenant"""
|
||||
try:
|
||||
filters = {"tenant_id": tenant_id}
|
||||
if status:
|
||||
filters["status"] = status
|
||||
|
||||
return await self.get_multi(
|
||||
filters=filters,
|
||||
skip=skip,
|
||||
limit=limit,
|
||||
order_by="created_at",
|
||||
order_desc=True
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to get logs by tenant",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to get training logs: {str(e)}")
|
||||
|
||||
async def get_active_jobs(self, tenant_id: str = None) -> List[ModelTrainingLog]:
|
||||
"""Get currently running training jobs"""
|
||||
try:
|
||||
filters = {"status": "running"}
|
||||
if tenant_id:
|
||||
filters["tenant_id"] = tenant_id
|
||||
|
||||
return await self.get_multi(
|
||||
filters=filters,
|
||||
order_by="start_time",
|
||||
order_desc=True
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to get active jobs",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to get active jobs: {str(e)}")
|
||||
|
||||
async def cancel_job(self, job_id: str, cancelled_by: str = None) -> Optional[ModelTrainingLog]:
|
||||
"""Cancel a training job"""
|
||||
try:
|
||||
update_data = {
|
||||
"status": "cancelled",
|
||||
"end_time": datetime.now(),
|
||||
"updated_at": datetime.now()
|
||||
}
|
||||
|
||||
if cancelled_by:
|
||||
update_data["error_message"] = f"Cancelled by {cancelled_by}"
|
||||
|
||||
log_entry = await self.get_by_job_id(job_id)
|
||||
if not log_entry:
|
||||
logger.error(f"Training log not found for job {job_id}")
|
||||
return None
|
||||
|
||||
# Only cancel if job is still running
|
||||
if log_entry.status not in ["pending", "running"]:
|
||||
logger.warning(f"Cannot cancel job {job_id} with status {log_entry.status}")
|
||||
return log_entry
|
||||
|
||||
updated_log = await self.update(log_entry.id, update_data)
|
||||
|
||||
logger.info("Training job cancelled",
|
||||
job_id=job_id,
|
||||
cancelled_by=cancelled_by)
|
||||
|
||||
return updated_log
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to cancel training job",
|
||||
job_id=job_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to cancel job: {str(e)}")
|
||||
|
||||
async def get_job_statistics(self, tenant_id: str = None) -> Dict[str, Any]:
|
||||
"""Get training job statistics"""
|
||||
try:
|
||||
base_filters = {}
|
||||
if tenant_id:
|
||||
base_filters["tenant_id"] = tenant_id
|
||||
|
||||
# Get counts by status
|
||||
total_jobs = await self.count(filters=base_filters)
|
||||
completed_jobs = await self.count(filters={**base_filters, "status": "completed"})
|
||||
failed_jobs = await self.count(filters={**base_filters, "status": "failed"})
|
||||
running_jobs = await self.count(filters={**base_filters, "status": "running"})
|
||||
pending_jobs = await self.count(filters={**base_filters, "status": "pending"})
|
||||
|
||||
# Get recent activity (jobs in last 7 days)
|
||||
seven_days_ago = datetime.now() - timedelta(days=7)
|
||||
recent_jobs = len(await self.get_records_by_date_range(
|
||||
seven_days_ago,
|
||||
datetime.now(),
|
||||
limit=1000 # High limit to get accurate count
|
||||
))
|
||||
|
||||
# Calculate success rate
|
||||
finished_jobs = completed_jobs + failed_jobs
|
||||
success_rate = (completed_jobs / finished_jobs * 100) if finished_jobs > 0 else 0
|
||||
|
||||
return {
|
||||
"total_jobs": total_jobs,
|
||||
"completed_jobs": completed_jobs,
|
||||
"failed_jobs": failed_jobs,
|
||||
"running_jobs": running_jobs,
|
||||
"pending_jobs": pending_jobs,
|
||||
"cancelled_jobs": total_jobs - completed_jobs - failed_jobs - running_jobs - pending_jobs,
|
||||
"success_rate": round(success_rate, 2),
|
||||
"recent_jobs_7d": recent_jobs
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to get job statistics",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e))
|
||||
return {
|
||||
"total_jobs": 0,
|
||||
"completed_jobs": 0,
|
||||
"failed_jobs": 0,
|
||||
"running_jobs": 0,
|
||||
"pending_jobs": 0,
|
||||
"cancelled_jobs": 0,
|
||||
"success_rate": 0.0,
|
||||
"recent_jobs_7d": 0
|
||||
}
|
||||
|
||||
async def cleanup_old_logs(self, days_old: int = 90) -> int:
|
||||
"""Clean up old completed/failed training logs"""
|
||||
return await self.cleanup_old_records(
|
||||
days_old=days_old,
|
||||
status_filter=None # Clean up all old records regardless of status
|
||||
)
|
||||
|
||||
async def get_job_duration_stats(self, tenant_id: str = None) -> Dict[str, Any]:
|
||||
"""Get job duration statistics"""
|
||||
try:
|
||||
# Use raw SQL for complex duration calculations
|
||||
tenant_filter = "AND tenant_id = :tenant_id" if tenant_id else ""
|
||||
params = {"tenant_id": tenant_id} if tenant_id else {}
|
||||
|
||||
query = text(f"""
|
||||
SELECT
|
||||
AVG(EXTRACT(EPOCH FROM (end_time - start_time))/60) as avg_duration_minutes,
|
||||
MIN(EXTRACT(EPOCH FROM (end_time - start_time))/60) as min_duration_minutes,
|
||||
MAX(EXTRACT(EPOCH FROM (end_time - start_time))/60) as max_duration_minutes,
|
||||
COUNT(*) as completed_jobs_with_duration
|
||||
FROM model_training_logs
|
||||
WHERE status = 'completed'
|
||||
AND start_time IS NOT NULL
|
||||
AND end_time IS NOT NULL
|
||||
{tenant_filter}
|
||||
""")
|
||||
|
||||
result = await self.session.execute(query, params)
|
||||
row = result.fetchone()
|
||||
|
||||
if row and row.completed_jobs_with_duration > 0:
|
||||
return {
|
||||
"avg_duration_minutes": round(float(row.avg_duration_minutes or 0), 2),
|
||||
"min_duration_minutes": round(float(row.min_duration_minutes or 0), 2),
|
||||
"max_duration_minutes": round(float(row.max_duration_minutes or 0), 2),
|
||||
"completed_jobs_with_duration": int(row.completed_jobs_with_duration)
|
||||
}
|
||||
|
||||
return {
|
||||
"avg_duration_minutes": 0.0,
|
||||
"min_duration_minutes": 0.0,
|
||||
"max_duration_minutes": 0.0,
|
||||
"completed_jobs_with_duration": 0
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to get job duration statistics",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e))
|
||||
return {
|
||||
"avg_duration_minutes": 0.0,
|
||||
"min_duration_minutes": 0.0,
|
||||
"max_duration_minutes": 0.0,
|
||||
"completed_jobs_with_duration": 0
|
||||
}
|
||||
|
||||
async def get_start_time(self, job_id: str) -> Optional[datetime]:
|
||||
"""Get the start time for a training job"""
|
||||
try:
|
||||
log_entry = await self.get_by_job_id(job_id)
|
||||
if log_entry and log_entry.start_time:
|
||||
return log_entry.start_time
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error("Failed to get start time",
|
||||
job_id=job_id,
|
||||
error=str(e))
|
||||
return None
|
||||
|
||||
async def create_job_atomic(
|
||||
self,
|
||||
job_id: str,
|
||||
tenant_id: str,
|
||||
config: Dict[str, Any] = None
|
||||
) -> tuple[Optional[ModelTrainingLog], bool]:
|
||||
"""
|
||||
Atomically create a training job, respecting the unique constraint.
|
||||
|
||||
This method uses INSERT ... ON CONFLICT to handle race conditions
|
||||
when multiple pods try to create a job for the same tenant simultaneously.
|
||||
The database constraint (idx_unique_active_training_per_tenant) ensures
|
||||
only one active job per tenant can exist.
|
||||
|
||||
Args:
|
||||
job_id: Unique job identifier
|
||||
tenant_id: Tenant identifier
|
||||
config: Optional job configuration
|
||||
|
||||
Returns:
|
||||
Tuple of (job, created):
|
||||
- If created: (new_job, True)
|
||||
- If conflict (existing active job): (existing_job, False)
|
||||
- If error: raises DatabaseError
|
||||
"""
|
||||
try:
|
||||
# First, try to find an existing active job
|
||||
existing = await self.get_active_jobs(tenant_id=tenant_id)
|
||||
pending = await self.get_logs_by_tenant(tenant_id=tenant_id, status="pending", limit=1)
|
||||
|
||||
if existing or pending:
|
||||
# Return existing job
|
||||
active_job = existing[0] if existing else pending[0]
|
||||
logger.info("Found existing active job, skipping creation",
|
||||
existing_job_id=active_job.job_id,
|
||||
tenant_id=tenant_id,
|
||||
requested_job_id=job_id)
|
||||
return (active_job, False)
|
||||
|
||||
# Try to create the new job
|
||||
# If another pod created one in the meantime, the unique constraint will prevent this
|
||||
log_data = {
|
||||
"job_id": job_id,
|
||||
"tenant_id": tenant_id,
|
||||
"status": "pending",
|
||||
"progress": 0,
|
||||
"current_step": "initializing",
|
||||
"config": config or {}
|
||||
}
|
||||
|
||||
try:
|
||||
new_job = await self.create_training_log(log_data)
|
||||
await self.session.commit()
|
||||
logger.info("Created new training job atomically",
|
||||
job_id=job_id,
|
||||
tenant_id=tenant_id)
|
||||
return (new_job, True)
|
||||
except Exception as create_error:
|
||||
error_str = str(create_error).lower()
|
||||
# Check if this is a unique constraint violation
|
||||
if "unique" in error_str or "duplicate" in error_str or "constraint" in error_str:
|
||||
await self.session.rollback()
|
||||
# Another pod created a job, fetch it
|
||||
logger.info("Unique constraint hit, fetching existing job",
|
||||
tenant_id=tenant_id,
|
||||
requested_job_id=job_id)
|
||||
existing = await self.get_active_jobs(tenant_id=tenant_id)
|
||||
pending = await self.get_logs_by_tenant(tenant_id=tenant_id, status="pending", limit=1)
|
||||
if existing or pending:
|
||||
active_job = existing[0] if existing else pending[0]
|
||||
return (active_job, False)
|
||||
# If still no job found, something went wrong
|
||||
raise DatabaseError(f"Constraint violation but no active job found: {create_error}")
|
||||
else:
|
||||
raise
|
||||
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error("Failed to create job atomically",
|
||||
job_id=job_id,
|
||||
tenant_id=tenant_id,
|
||||
error=str(e))
|
||||
raise DatabaseError(f"Failed to create training job atomically: {str(e)}")
|
||||
|
||||
async def recover_stale_jobs(self, stale_threshold_minutes: int = 60) -> List[ModelTrainingLog]:
|
||||
"""
|
||||
Find and mark stale running jobs as failed.
|
||||
|
||||
This is used during service startup to clean up jobs that were
|
||||
running when a pod crashed. With multiple replicas, only stale
|
||||
jobs (not updated recently) should be marked as failed.
|
||||
|
||||
Args:
|
||||
stale_threshold_minutes: Jobs not updated for this long are considered stale
|
||||
|
||||
Returns:
|
||||
List of jobs that were marked as failed
|
||||
"""
|
||||
try:
|
||||
stale_cutoff = datetime.now() - timedelta(minutes=stale_threshold_minutes)
|
||||
|
||||
# Find running jobs that haven't been updated recently
|
||||
query = text("""
|
||||
SELECT id, job_id, tenant_id, status, updated_at
|
||||
FROM model_training_logs
|
||||
WHERE status IN ('running', 'pending')
|
||||
AND updated_at < :stale_cutoff
|
||||
""")
|
||||
|
||||
result = await self.session.execute(query, {"stale_cutoff": stale_cutoff})
|
||||
stale_jobs = result.fetchall()
|
||||
|
||||
recovered_jobs = []
|
||||
for row in stale_jobs:
|
||||
try:
|
||||
# Mark as failed
|
||||
update_query = text("""
|
||||
UPDATE model_training_logs
|
||||
SET status = 'failed',
|
||||
error_message = :error_msg,
|
||||
end_time = :end_time,
|
||||
updated_at = :updated_at
|
||||
WHERE id = :id AND status IN ('running', 'pending')
|
||||
""")
|
||||
|
||||
await self.session.execute(update_query, {
|
||||
"id": row.id,
|
||||
"error_msg": f"Job recovered as failed - not updated since {row.updated_at.isoformat()}. Pod may have crashed.",
|
||||
"end_time": datetime.now(),
|
||||
"updated_at": datetime.now()
|
||||
})
|
||||
|
||||
logger.warning("Recovered stale training job",
|
||||
job_id=row.job_id,
|
||||
tenant_id=str(row.tenant_id),
|
||||
last_updated=row.updated_at.isoformat() if row.updated_at else "unknown")
|
||||
|
||||
# Fetch the updated job to return
|
||||
job = await self.get_by_job_id(row.job_id)
|
||||
if job:
|
||||
recovered_jobs.append(job)
|
||||
|
||||
except Exception as job_error:
|
||||
logger.error("Failed to recover individual stale job",
|
||||
job_id=row.job_id,
|
||||
error=str(job_error))
|
||||
|
||||
if recovered_jobs:
|
||||
await self.session.commit()
|
||||
logger.info("Stale job recovery completed",
|
||||
recovered_count=len(recovered_jobs),
|
||||
stale_threshold_minutes=stale_threshold_minutes)
|
||||
|
||||
return recovered_jobs
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to recover stale jobs",
|
||||
error=str(e))
|
||||
await self.session.rollback()
|
||||
return []
|
||||
Reference in New Issue
Block a user