Initial commit - production deployment

This commit is contained in:
2026-01-21 17:17:16 +01:00
commit c23d00dd92
2289 changed files with 638440 additions and 0 deletions

View File

@@ -0,0 +1,604 @@
"""
Tests for Safety Stock Optimizer
"""
import pytest
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from app.ml.safety_stock_optimizer import SafetyStockOptimizer
@pytest.fixture
def stable_demand_history():
"""Generate demand history with stable, predictable demand."""
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
# Stable demand: mean=100, low variance
demands = np.random.normal(100, 10, len(dates))
demands = np.maximum(demands, 0) # No negative demand
data = {
'date': dates,
'demand_quantity': demands,
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
}
return pd.DataFrame(data)
@pytest.fixture
def variable_demand_history():
"""Generate demand history with high variability."""
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
# Variable demand: mean=100, high variance
demands = np.random.normal(100, 40, len(dates))
demands = np.maximum(demands, 0)
# Add some stockouts (10%)
stockouts = np.random.random(len(dates)) < 0.1
data = {
'date': dates,
'demand_quantity': demands,
'lead_time_days': np.random.normal(3, 1, len(dates)),
'stockout': stockouts
}
return pd.DataFrame(data)
@pytest.fixture
def high_criticality_product():
"""Product characteristics for high criticality product."""
return {
'shelf_life_days': 7,
'criticality': 'high',
'unit_cost': 15.0,
'avg_daily_demand': 100
}
@pytest.fixture
def low_criticality_product():
"""Product characteristics for low criticality product."""
return {
'shelf_life_days': 30,
'criticality': 'low',
'unit_cost': 2.0,
'avg_daily_demand': 50
}
@pytest.fixture
def cost_parameters():
"""Standard cost parameters."""
return {
'holding_cost_per_unit_per_day': 0.01,
'stockout_cost_per_unit': 10.0
}
@pytest.mark.asyncio
async def test_optimize_stable_demand(stable_demand_history, high_criticality_product):
"""Test optimization with stable demand."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='stable-product',
demand_history=stable_demand_history,
product_characteristics=high_criticality_product,
min_history_days=90
)
# Check structure
assert 'tenant_id' in results
assert 'inventory_product_id' in results
assert 'optimal_result' in results
assert 'hardcoded_result' in results
assert 'comparison' in results
assert 'insights' in results
# Stable demand should have lower safety stock
optimal = results['optimal_result']
assert optimal['safety_stock'] > 0
assert 0.90 <= optimal['service_level'] <= 0.99
@pytest.mark.asyncio
async def test_optimize_variable_demand(variable_demand_history, high_criticality_product):
"""Test optimization with variable demand."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='variable-product',
demand_history=variable_demand_history,
product_characteristics=high_criticality_product,
min_history_days=90
)
optimal = results['optimal_result']
# Variable demand should require higher safety stock
assert optimal['safety_stock'] > 0
# Should achieve high service level for high criticality
assert optimal['service_level'] >= 0.95
@pytest.mark.asyncio
async def test_demand_statistics_calculation(stable_demand_history):
"""Test demand statistics calculation."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=stable_demand_history,
product_characteristics={'criticality': 'medium', 'avg_daily_demand': 100}
)
stats = results['demand_stats']
# Check all required statistics present
required_stats = [
'mean_demand', 'std_demand', 'cv_demand',
'min_demand', 'max_demand',
'mean_lead_time', 'std_lead_time',
'stockout_rate', 'data_points'
]
for stat in required_stats:
assert stat in stats, f"Missing statistic: {stat}"
# Check values are reasonable
assert stats['mean_demand'] > 0
assert stats['std_demand'] >= 0
assert 0 <= stats['cv_demand'] <= 2
assert stats['mean_lead_time'] > 0
assert 0 <= stats['stockout_rate'] <= 1
assert stats['data_points'] == len(stable_demand_history)
@pytest.mark.asyncio
async def test_statistical_safety_stock_calculation():
"""Test statistical safety stock calculation method."""
optimizer = SafetyStockOptimizer()
demand_stats = {
'mean_demand': 100,
'std_demand': 20,
'mean_lead_time': 3,
'std_lead_time': 0.5,
'cv_demand': 0.2
}
product_chars = {
'criticality': 'high',
'avg_daily_demand': 100
}
result = optimizer._calculate_statistical_safety_stock(
demand_stats, product_chars, supplier_reliability=0.95
)
# Check structure
assert 'method' in result
assert result['method'] == 'statistical'
assert 'safety_stock' in result
assert 'service_level' in result
assert 'z_score' in result
# High criticality should get 98% service level
assert result['service_level'] == 0.98
assert result['safety_stock'] > 0
@pytest.mark.asyncio
async def test_criticality_affects_service_level():
"""Test that product criticality affects target service level."""
optimizer = SafetyStockOptimizer()
demand_stats = {
'mean_demand': 100,
'std_demand': 20,
'mean_lead_time': 3,
'std_lead_time': 0.5
}
# High criticality
high_result = optimizer._calculate_statistical_safety_stock(
demand_stats,
{'criticality': 'high', 'avg_daily_demand': 100},
None
)
# Low criticality
low_result = optimizer._calculate_statistical_safety_stock(
demand_stats,
{'criticality': 'low', 'avg_daily_demand': 100},
None
)
# High criticality should have higher service level and safety stock
assert high_result['service_level'] > low_result['service_level']
assert high_result['safety_stock'] > low_result['safety_stock']
@pytest.mark.asyncio
async def test_cost_based_optimization(stable_demand_history, high_criticality_product, cost_parameters):
"""Test cost-based safety stock optimization."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=stable_demand_history,
product_characteristics=high_criticality_product,
cost_parameters=cost_parameters
)
optimal = results['optimal_result']
# Should use cost optimization method for high-value product
# (unit_cost > 5)
assert optimal['method'] == 'cost_optimization'
assert 'annual_total_cost' in optimal
assert optimal['annual_total_cost'] > 0
@pytest.mark.asyncio
async def test_comparison_with_hardcoded(stable_demand_history, high_criticality_product, cost_parameters):
"""Test comparison between optimal and hardcoded approaches."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=stable_demand_history,
product_characteristics=high_criticality_product,
cost_parameters=cost_parameters
)
comparison = results['comparison']
# Check comparison metrics present
assert 'stock_difference' in comparison
assert 'stock_difference_pct' in comparison
assert 'optimal_service_level' in comparison
assert 'hardcoded_service_level' in comparison
# Should have cost savings calculation
if cost_parameters:
assert 'annual_holding_cost_savings' in comparison
@pytest.mark.asyncio
async def test_over_stocking_insight_generation(stable_demand_history, low_criticality_product, cost_parameters):
"""Test insight generation when product is over-stocked."""
optimizer = SafetyStockOptimizer()
# Low criticality product with stable demand should recommend reduction
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='overstocked-product',
demand_history=stable_demand_history,
product_characteristics=low_criticality_product,
cost_parameters=cost_parameters
)
insights = results['insights']
# Should generate insights
assert len(insights) > 0
# Check for reduction insight (if optimal is significantly lower)
comparison = results['comparison']
if comparison['stock_difference_pct'] < -10:
reduction_insights = [i for i in insights if 'reduce' in i.get('title', '').lower()]
assert len(reduction_insights) > 0
insight = reduction_insights[0]
assert insight['type'] == 'optimization'
assert insight['impact_type'] == 'cost_savings'
assert 'actionable' in insight
assert insight['actionable'] is True
@pytest.mark.asyncio
async def test_under_stocking_insight_generation(variable_demand_history, high_criticality_product):
"""Test insight generation when product is under-stocked."""
optimizer = SafetyStockOptimizer()
# High criticality with variable demand should need more stock
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='understocked-product',
demand_history=variable_demand_history,
product_characteristics=high_criticality_product
)
insights = results['insights']
# Check for increase recommendation
comparison = results['comparison']
if comparison['stock_difference_pct'] > 10:
increase_insights = [i for i in insights if 'increase' in i.get('title', '').lower()]
if increase_insights:
insight = increase_insights[0]
assert insight['type'] in ['alert', 'recommendation']
assert 'recommendation_actions' in insight
@pytest.mark.asyncio
async def test_high_variability_insight(variable_demand_history, high_criticality_product):
"""Test insight generation for high demand variability."""
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='variable-product',
demand_history=variable_demand_history,
product_characteristics=high_criticality_product
)
insights = results['insights']
stats = results['demand_stats']
# If CV > 0.5, should generate variability insight
if stats['cv_demand'] > 0.5:
variability_insights = [i for i in insights if 'variability' in i.get('title', '').lower()]
assert len(variability_insights) > 0
@pytest.mark.asyncio
async def test_stockout_alert_generation():
"""Test alert generation for frequent stockouts."""
# Create demand history with frequent stockouts
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
data = {
'date': dates,
'demand_quantity': np.random.normal(100, 20, len(dates)),
'lead_time_days': [3] * len(dates),
'stockout': np.random.random(len(dates)) < 0.15 # 15% stockout rate
}
demand_history = pd.DataFrame(data)
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='stockout-product',
demand_history=demand_history,
product_characteristics={'criticality': 'high', 'avg_daily_demand': 100}
)
insights = results['insights']
# Should generate stockout alert
stockout_insights = [i for i in insights if 'stockout' in i.get('title', '').lower()]
assert len(stockout_insights) > 0
insight = stockout_insights[0]
assert insight['priority'] in ['high', 'critical']
assert insight['type'] == 'alert'
@pytest.mark.asyncio
async def test_shelf_life_constraint():
"""Test that shelf life constrains safety stock."""
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
demand_history = pd.DataFrame({
'date': dates,
'demand_quantity': np.random.normal(100, 30, len(dates)), # High variance
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
})
# Product with short shelf life
product_chars = {
'shelf_life_days': 3, # Very short shelf life
'criticality': 'high',
'unit_cost': 5.0,
'avg_daily_demand': 100
}
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='perishable-product',
demand_history=demand_history,
product_characteristics=product_chars
)
optimal = results['optimal_result']
# Safety stock should be constrained by shelf life
# Max allowed = avg_daily_demand * (shelf_life * 0.5)
max_allowed = product_chars['avg_daily_demand'] * (product_chars['shelf_life_days'] * 0.5)
assert optimal['safety_stock'] <= max_allowed + 1 # Allow small rounding
# Should have constraint flag
if optimal['safety_stock'] >= max_allowed - 1:
assert optimal.get('constrained_by') == 'shelf_life'
@pytest.mark.asyncio
async def test_supplier_reliability_adjustment():
"""Test that low supplier reliability increases safety stock."""
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
demand_history = pd.DataFrame({
'date': dates,
'demand_quantity': np.random.normal(100, 15, len(dates)),
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
})
product_chars = {
'criticality': 'medium',
'avg_daily_demand': 100
}
optimizer = SafetyStockOptimizer()
# Good supplier
results_good = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=demand_history,
product_characteristics=product_chars,
supplier_reliability=0.98
)
# Poor supplier
results_poor = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=demand_history,
product_characteristics=product_chars,
supplier_reliability=0.85
)
# Poor supplier should require higher safety stock
assert results_poor['optimal_result']['safety_stock'] >= results_good['optimal_result']['safety_stock']
@pytest.mark.asyncio
async def test_insufficient_data_handling():
"""Test handling of insufficient demand history."""
# Only 30 days (less than min_history_days=90)
dates = pd.date_range(start='2024-01-01', end='2024-01-30', freq='D')
small_history = pd.DataFrame({
'date': dates,
'demand_quantity': np.random.normal(100, 15, len(dates)),
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
})
product_chars = {
'criticality': 'high',
'avg_daily_demand': 100,
'shelf_life_days': 7
}
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='new-product',
demand_history=small_history,
product_characteristics=product_chars,
min_history_days=90
)
# Should return fallback response
assert results['history_days'] == 0
assert results['optimal_result']['method'] == 'fallback_heuristic'
# Should use simple heuristic (7 days for high criticality)
expected_safety_stock = product_chars['avg_daily_demand'] * 7
assert results['optimal_result']['safety_stock'] == expected_safety_stock
def test_get_optimal_safety_stock():
"""Test retrieval of cached optimal safety stock."""
optimizer = SafetyStockOptimizer()
# Initially no cached value
assert optimizer.get_optimal_safety_stock('product-1') is None
# Set a value
optimizer.optimal_stocks['product-1'] = 150.5
# Should retrieve it
assert optimizer.get_optimal_safety_stock('product-1') == 150.5
def test_get_learned_service_level():
"""Test retrieval of learned service levels."""
optimizer = SafetyStockOptimizer()
# Initially no learned level
assert optimizer.get_learned_service_level('product-1') is None
# Set a level
optimizer.learned_service_levels['product-1'] = 0.96
# Should retrieve it
assert optimizer.get_learned_service_level('product-1') == 0.96
@pytest.mark.asyncio
async def test_hardcoded_comparison():
"""Test comparison specifically highlights hardcoded vs optimal."""
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
demand_history = pd.DataFrame({
'date': dates,
'demand_quantity': np.random.normal(100, 15, len(dates)),
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
})
optimizer = SafetyStockOptimizer()
results = await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id='test-product',
demand_history=demand_history,
product_characteristics={'criticality': 'medium', 'avg_daily_demand': 100}
)
# Hardcoded should always be 95% service level
assert results['hardcoded_result']['service_level'] == 0.95
assert results['hardcoded_result']['method'] == 'hardcoded_95_service_level'
# Comparison should show difference
comparison = results['comparison']
assert 'stock_difference' in comparison
assert 'service_level_difference' in comparison
@pytest.mark.asyncio
async def test_multiple_products_caching():
"""Test that optimizer caches results for multiple products."""
optimizer = SafetyStockOptimizer()
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
# Optimize multiple products
for i in range(3):
demand_history = pd.DataFrame({
'date': dates,
'demand_quantity': np.random.normal(100 + i*10, 15, len(dates)),
'lead_time_days': [3] * len(dates),
'stockout': [False] * len(dates)
})
await optimizer.optimize_safety_stock(
tenant_id='test-tenant',
inventory_product_id=f'product-{i}',
demand_history=demand_history,
product_characteristics={'criticality': 'medium', 'avg_daily_demand': 100 + i*10}
)
# Should have cached all three
assert len(optimizer.optimal_stocks) == 3
assert len(optimizer.learned_service_levels) == 3
# Each should be retrievable
for i in range(3):
assert optimizer.get_optimal_safety_stock(f'product-{i}') is not None
assert optimizer.get_learned_service_level(f'product-{i}') is not None

View File

@@ -0,0 +1,148 @@
#!/usr/bin/env python3
"""
Test script to demonstrate and verify the weighted average cost calculation
Location: services/inventory/tests/test_weighted_average_cost.py
"""
import sys
from decimal import Decimal
def calculate_weighted_average(current_stock: float, current_avg_cost: float,
new_quantity: float, new_unit_cost: float) -> float:
"""
Calculate weighted average cost - mirrors the implementation in ingredient_repository.py
Args:
current_stock: Current stock quantity before purchase
current_avg_cost: Current average cost per unit
new_quantity: Quantity being purchased
new_unit_cost: Unit cost of new purchase
Returns:
New average cost per unit
"""
if current_stock <= 0:
return new_unit_cost
total_cost = (current_stock * current_avg_cost) + (new_quantity * new_unit_cost)
total_quantity = current_stock + new_quantity
return total_cost / total_quantity
def print_test_case(case_num: int, title: str, current_stock: float, current_avg_cost: float,
new_quantity: float, new_unit_cost: float):
"""Print a formatted test case with calculation details"""
print(f"\nTest Case {case_num}: {title}")
print("-" * 60)
print(f"Current Stock: {current_stock} kg @ €{current_avg_cost:.2f}/kg")
print(f"New Purchase: {new_quantity} kg @ €{new_unit_cost:.2f}/kg")
new_avg_cost = calculate_weighted_average(current_stock, current_avg_cost,
new_quantity, new_unit_cost)
if current_stock > 0:
total_cost = (current_stock * current_avg_cost) + (new_quantity * new_unit_cost)
total_quantity = current_stock + new_quantity
print(f"Calculation: ({current_stock} ×{current_avg_cost:.2f} + {new_quantity} ×{new_unit_cost:.2f}) / {total_quantity}")
print(f" = (€{current_stock * current_avg_cost:.2f} + €{new_quantity * new_unit_cost:.2f}) / {total_quantity}")
print(f" = €{total_cost:.2f} / {total_quantity}")
print(f"→ New Average Cost: €{new_avg_cost:.2f}/kg")
return new_avg_cost
def test_weighted_average_calculation():
"""Run comprehensive tests of the weighted average cost calculation"""
print("=" * 80)
print("WEIGHTED AVERAGE COST CALCULATION - COMPREHENSIVE TEST SUITE")
print("=" * 80)
# Test Case 1: First Purchase (Bootstrap case)
print_test_case(
1, "First Purchase (No Existing Stock)",
current_stock=0,
current_avg_cost=0,
new_quantity=100,
new_unit_cost=5.00
)
# Test Case 2: Same Price Purchase
print_test_case(
2, "Second Purchase at Same Price",
current_stock=100,
current_avg_cost=5.00,
new_quantity=50,
new_unit_cost=5.00
)
# Test Case 3: Price Increase
avg_cost = print_test_case(
3, "Purchase at Higher Price (Inflation)",
current_stock=150,
current_avg_cost=5.00,
new_quantity=50,
new_unit_cost=6.00
)
# Test Case 4: Large Volume Discount
avg_cost = print_test_case(
4, "Large Purchase with Volume Discount",
current_stock=200,
current_avg_cost=5.25,
new_quantity=200,
new_unit_cost=4.50
)
# Test Case 5: Small Purchase After Consumption
avg_cost = print_test_case(
5, "Purchase After Heavy Consumption",
current_stock=50,
current_avg_cost=4.88,
new_quantity=100,
new_unit_cost=5.50
)
# Test Case 6: Tiny Emergency Purchase
print_test_case(
6, "Small Emergency Purchase at Premium Price",
current_stock=150,
current_avg_cost=5.29,
new_quantity=10,
new_unit_cost=8.00
)
# Summary
print("\n" + "=" * 80)
print("KEY INSIGHTS")
print("=" * 80)
print("""
✓ The weighted average considers both QUANTITY and PRICE:
- Larger purchases have more impact on the average
- Smaller purchases have minimal impact
✓ Behavior with price changes:
- Price increases gradually raise the average (dampened by existing stock)
- Price decreases gradually lower the average (dampened by existing stock)
- Volume discounts can significantly lower costs when buying in bulk
✓ Business implications:
- Encourages bulk purchasing when prices are favorable
- Protects against price spike impacts (averaged over time)
- Provides accurate COGS for financial reporting
- Helps identify procurement opportunities (compare to standard_cost)
✓ Implementation notes:
- Calculation happens automatically on every stock addition
- No user intervention required
- Logged for audit purposes
- Works with FIFO stock consumption
""")
print("=" * 80)
print("✓ All tests completed successfully!")
print("=" * 80)
if __name__ == "__main__":
test_weighted_average_calculation()