Add improvements 2
This commit is contained in:
@@ -216,17 +216,24 @@ class HybridProphetXGBoost:
|
||||
Get Prophet predictions for given dataframe.
|
||||
|
||||
Args:
|
||||
prophet_result: Prophet model result from training
|
||||
prophet_result: Prophet model result from training (contains model_path)
|
||||
df: DataFrame with 'ds' column
|
||||
|
||||
Returns:
|
||||
Array of predictions
|
||||
"""
|
||||
# Get the Prophet model from result
|
||||
prophet_model = prophet_result.get('model')
|
||||
# Get the model path from result instead of expecting the model object directly
|
||||
model_path = prophet_result.get('model_path')
|
||||
|
||||
if prophet_model is None:
|
||||
raise ValueError("Prophet model not found in result")
|
||||
if model_path is None:
|
||||
raise ValueError("Prophet model path not found in result")
|
||||
|
||||
# Load the actual Prophet model from the stored path
|
||||
try:
|
||||
import joblib
|
||||
prophet_model = joblib.load(model_path)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to load Prophet model from path {model_path}: {str(e)}")
|
||||
|
||||
# Prepare dataframe for prediction
|
||||
pred_df = df[['ds']].copy()
|
||||
@@ -273,7 +280,8 @@ class HybridProphetXGBoost:
|
||||
'reg_lambda': 1.0, # L2 regularization
|
||||
'objective': 'reg:squarederror',
|
||||
'random_state': 42,
|
||||
'n_jobs': -1
|
||||
'n_jobs': -1,
|
||||
'early_stopping_rounds': 10
|
||||
}
|
||||
|
||||
# Initialize model
|
||||
@@ -285,7 +293,6 @@ class HybridProphetXGBoost:
|
||||
model.fit,
|
||||
X_train, y_train,
|
||||
eval_set=[(X_val, y_val)],
|
||||
early_stopping_rounds=10,
|
||||
verbose=False
|
||||
)
|
||||
|
||||
@@ -303,109 +310,86 @@ class HybridProphetXGBoost:
|
||||
train_prophet_pred: np.ndarray,
|
||||
val_prophet_pred: np.ndarray,
|
||||
prophet_result: Dict[str, Any]
|
||||
) -> Dict[str, float]:
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Evaluate hybrid model vs Prophet-only on validation set.
|
||||
|
||||
Args:
|
||||
train_df: Training data
|
||||
val_df: Validation data
|
||||
train_prophet_pred: Prophet predictions on training set
|
||||
val_prophet_pred: Prophet predictions on validation set
|
||||
prophet_result: Prophet training result
|
||||
|
||||
Returns:
|
||||
Dictionary of metrics
|
||||
Evaluate the overall performance of the hybrid model using threading for metrics.
|
||||
"""
|
||||
# Get actual values
|
||||
train_actual = train_df['y'].values
|
||||
val_actual = val_df['y'].values
|
||||
|
||||
# Get XGBoost predictions on residuals
|
||||
import asyncio
|
||||
|
||||
# Get XGBoost predictions on training and validation
|
||||
X_train = train_df[self.feature_columns].values
|
||||
X_val = val_df[self.feature_columns].values
|
||||
|
||||
# ✅ FIX: Run blocking predict() in thread pool to avoid blocking event loop
|
||||
import asyncio
|
||||
|
||||
train_xgb_pred = await asyncio.to_thread(self.xgb_model.predict, X_train)
|
||||
val_xgb_pred = await asyncio.to_thread(self.xgb_model.predict, X_val)
|
||||
|
||||
# Hybrid predictions = Prophet + XGBoost residual correction
|
||||
|
||||
# Hybrid prediction = Prophet prediction + XGBoost residual prediction
|
||||
train_hybrid_pred = train_prophet_pred + train_xgb_pred
|
||||
val_hybrid_pred = val_prophet_pred + val_xgb_pred
|
||||
|
||||
# Calculate metrics for Prophet-only
|
||||
prophet_train_mae = mean_absolute_error(train_actual, train_prophet_pred)
|
||||
prophet_val_mae = mean_absolute_error(val_actual, val_prophet_pred)
|
||||
prophet_train_mape = mean_absolute_percentage_error(train_actual, train_prophet_pred) * 100
|
||||
prophet_val_mape = mean_absolute_percentage_error(val_actual, val_prophet_pred) * 100
|
||||
|
||||
# Calculate metrics for Hybrid
|
||||
hybrid_train_mae = mean_absolute_error(train_actual, train_hybrid_pred)
|
||||
hybrid_val_mae = mean_absolute_error(val_actual, val_hybrid_pred)
|
||||
hybrid_train_mape = mean_absolute_percentage_error(train_actual, train_hybrid_pred) * 100
|
||||
hybrid_val_mape = mean_absolute_percentage_error(val_actual, val_hybrid_pred) * 100
|
||||
|
||||
actual_train = train_df['y'].values
|
||||
actual_val = val_df['y'].values
|
||||
|
||||
# Basic RMSE calculation
|
||||
train_rmse = float(np.sqrt(np.mean((actual_train - train_hybrid_pred)**2)))
|
||||
val_rmse = float(np.sqrt(np.mean((actual_val - val_hybrid_pred)**2)))
|
||||
|
||||
# MAE
|
||||
train_mae = float(np.mean(np.abs(actual_train - train_hybrid_pred)))
|
||||
val_mae = float(np.mean(np.abs(actual_val - val_hybrid_pred)))
|
||||
|
||||
# MAPE (with safety for zero sales)
|
||||
train_mape = float(np.mean(np.abs((actual_train - train_hybrid_pred) / np.maximum(actual_train, 1))))
|
||||
val_mape = float(np.mean(np.abs((actual_val - val_hybrid_pred) / np.maximum(actual_val, 1))))
|
||||
|
||||
# Calculate improvement
|
||||
mae_improvement = ((prophet_val_mae - hybrid_val_mae) / prophet_val_mae) * 100
|
||||
mape_improvement = ((prophet_val_mape - hybrid_val_mape) / prophet_val_mape) * 100
|
||||
prophet_metrics = prophet_result.get("metrics", {})
|
||||
prophet_val_mae = prophet_metrics.get("val_mae", val_mae) # Fallback to hybrid if missing
|
||||
prophet_val_mape = prophet_metrics.get("val_mape", val_mape)
|
||||
|
||||
improvement_pct = 0.0
|
||||
if prophet_val_mape > 0:
|
||||
improvement_pct = ((prophet_val_mape - val_mape) / prophet_val_mape) * 100
|
||||
|
||||
metrics = {
|
||||
'prophet_train_mae': float(prophet_train_mae),
|
||||
'prophet_val_mae': float(prophet_val_mae),
|
||||
'prophet_train_mape': float(prophet_train_mape),
|
||||
'prophet_val_mape': float(prophet_val_mape),
|
||||
'hybrid_train_mae': float(hybrid_train_mae),
|
||||
'hybrid_val_mae': float(hybrid_val_mae),
|
||||
'hybrid_train_mape': float(hybrid_train_mape),
|
||||
'hybrid_val_mape': float(hybrid_val_mape),
|
||||
'mae_improvement_pct': float(mae_improvement),
|
||||
'mape_improvement_pct': float(mape_improvement),
|
||||
'improvement_percentage': float(mape_improvement) # Primary metric
|
||||
"train_rmse": train_rmse,
|
||||
"val_rmse": val_rmse,
|
||||
"train_mae": train_mae,
|
||||
"val_mae": val_mae,
|
||||
"train_mape": train_mape,
|
||||
"val_mape": val_mape,
|
||||
"prophet_val_mape": prophet_val_mape,
|
||||
"hybrid_val_mape": val_mape,
|
||||
"improvement_percentage": float(improvement_pct),
|
||||
"prophet_metrics": prophet_metrics
|
||||
}
|
||||
|
||||
logger.info(
|
||||
"Hybrid model evaluation complete",
|
||||
val_rmse=val_rmse,
|
||||
val_mae=val_mae,
|
||||
val_mape=val_mape,
|
||||
improvement=improvement_pct
|
||||
)
|
||||
|
||||
return metrics
|
||||
|
||||
def _package_hybrid_model(
|
||||
self,
|
||||
prophet_result: Dict[str, Any],
|
||||
metrics: Dict[str, float],
|
||||
metrics: Dict[str, Any],
|
||||
tenant_id: str,
|
||||
inventory_product_id: str
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Package hybrid model for storage.
|
||||
|
||||
Args:
|
||||
prophet_result: Prophet model result
|
||||
metrics: Hybrid model metrics
|
||||
tenant_id: Tenant ID
|
||||
inventory_product_id: Product ID
|
||||
|
||||
Returns:
|
||||
Model package dictionary
|
||||
"""
|
||||
return {
|
||||
'model_type': 'hybrid_prophet_xgboost',
|
||||
'prophet_model': prophet_result.get('model'),
|
||||
'prophet_model_path': prophet_result.get('model_path'),
|
||||
'xgboost_model': self.xgb_model,
|
||||
'feature_columns': self.feature_columns,
|
||||
'prophet_metrics': {
|
||||
'train_mae': metrics['prophet_train_mae'],
|
||||
'val_mae': metrics['prophet_val_mae'],
|
||||
'train_mape': metrics['prophet_train_mape'],
|
||||
'val_mape': metrics['prophet_val_mape']
|
||||
},
|
||||
'hybrid_metrics': {
|
||||
'train_mae': metrics['hybrid_train_mae'],
|
||||
'val_mae': metrics['hybrid_val_mae'],
|
||||
'train_mape': metrics['hybrid_train_mape'],
|
||||
'val_mape': metrics['hybrid_val_mape']
|
||||
},
|
||||
'improvement_metrics': {
|
||||
'mae_improvement_pct': metrics['mae_improvement_pct'],
|
||||
'mape_improvement_pct': metrics['mape_improvement_pct']
|
||||
},
|
||||
'metrics': metrics,
|
||||
'tenant_id': tenant_id,
|
||||
'inventory_product_id': inventory_product_id,
|
||||
'trained_at': datetime.now(timezone.utc).isoformat()
|
||||
@@ -426,8 +410,18 @@ class HybridProphetXGBoost:
|
||||
Returns:
|
||||
DataFrame with predictions
|
||||
"""
|
||||
# Step 1: Get Prophet predictions
|
||||
prophet_model = model_data['prophet_model']
|
||||
# Step 1: Get Prophet model from path and make predictions
|
||||
prophet_model_path = model_data.get('prophet_model_path')
|
||||
if prophet_model_path is None:
|
||||
raise ValueError("Prophet model path not found in model data")
|
||||
|
||||
# Load the Prophet model from the stored path
|
||||
try:
|
||||
import joblib
|
||||
prophet_model = joblib.load(prophet_model_path)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to load Prophet model from path {prophet_model_path}: {str(e)}")
|
||||
|
||||
# ✅ FIX: Run blocking predict() in thread pool to avoid blocking event loop
|
||||
import asyncio
|
||||
prophet_forecast = await asyncio.to_thread(prophet_model.predict, future_df)
|
||||
|
||||
@@ -43,86 +43,79 @@ class POIFeatureIntegrator:
|
||||
force_refresh: bool = False
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Fetch POI features for tenant location.
|
||||
Fetch POI features for tenant location (optimized for training).
|
||||
|
||||
First checks if POI context exists, if not, triggers detection.
|
||||
First checks if POI context exists. If not, returns None without triggering detection.
|
||||
POI detection should be triggered during tenant registration, not during training.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
latitude: Bakery latitude
|
||||
longitude: Bakery longitude
|
||||
force_refresh: Force re-detection
|
||||
force_refresh: Force re-detection (only use if POI context already exists)
|
||||
|
||||
Returns:
|
||||
Dictionary with POI features or None if detection fails
|
||||
Dictionary with POI features or None if not available
|
||||
"""
|
||||
try:
|
||||
# Try to get existing POI context first
|
||||
if not force_refresh:
|
||||
existing_context = await self.external_client.get_poi_context(tenant_id)
|
||||
if existing_context:
|
||||
poi_context = existing_context.get("poi_context", {})
|
||||
ml_features = poi_context.get("ml_features", {})
|
||||
existing_context = await self.external_client.get_poi_context(tenant_id)
|
||||
|
||||
# Check if stale
|
||||
is_stale = existing_context.get("is_stale", False)
|
||||
if not is_stale:
|
||||
if existing_context:
|
||||
poi_context = existing_context.get("poi_context", {})
|
||||
ml_features = poi_context.get("ml_features", {})
|
||||
|
||||
# Check if stale and force_refresh is requested
|
||||
is_stale = existing_context.get("is_stale", False)
|
||||
|
||||
if not is_stale or not force_refresh:
|
||||
logger.info(
|
||||
"Using existing POI context",
|
||||
tenant_id=tenant_id,
|
||||
is_stale=is_stale,
|
||||
feature_count=len(ml_features)
|
||||
)
|
||||
return ml_features
|
||||
else:
|
||||
logger.info(
|
||||
"POI context is stale and force_refresh=True, refreshing",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
# Only refresh if explicitly requested and context exists
|
||||
detection_result = await self.external_client.detect_poi_for_tenant(
|
||||
tenant_id=tenant_id,
|
||||
latitude=latitude,
|
||||
longitude=longitude,
|
||||
force_refresh=True
|
||||
)
|
||||
|
||||
if detection_result:
|
||||
poi_context = detection_result.get("poi_context", {})
|
||||
ml_features = poi_context.get("ml_features", {})
|
||||
logger.info(
|
||||
"Using existing POI context",
|
||||
tenant_id=tenant_id
|
||||
"POI refresh completed",
|
||||
tenant_id=tenant_id,
|
||||
feature_count=len(ml_features)
|
||||
)
|
||||
return ml_features
|
||||
else:
|
||||
logger.info(
|
||||
"POI context is stale, refreshing",
|
||||
logger.warning(
|
||||
"POI refresh failed, returning existing features",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
force_refresh = True
|
||||
else:
|
||||
logger.info(
|
||||
"No existing POI context, will detect",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
|
||||
# Detect or refresh POIs
|
||||
logger.info(
|
||||
"Detecting POIs for tenant",
|
||||
tenant_id=tenant_id,
|
||||
location=(latitude, longitude)
|
||||
)
|
||||
|
||||
detection_result = await self.external_client.detect_poi_for_tenant(
|
||||
tenant_id=tenant_id,
|
||||
latitude=latitude,
|
||||
longitude=longitude,
|
||||
force_refresh=force_refresh
|
||||
)
|
||||
|
||||
if detection_result:
|
||||
poi_context = detection_result.get("poi_context", {})
|
||||
ml_features = poi_context.get("ml_features", {})
|
||||
|
||||
logger.info(
|
||||
"POI detection completed",
|
||||
tenant_id=tenant_id,
|
||||
total_pois=poi_context.get("total_pois_detected", 0),
|
||||
feature_count=len(ml_features)
|
||||
)
|
||||
|
||||
return ml_features
|
||||
return ml_features
|
||||
else:
|
||||
logger.error(
|
||||
"POI detection failed",
|
||||
logger.info(
|
||||
"No existing POI context found - POI detection should be triggered during tenant registration",
|
||||
tenant_id=tenant_id
|
||||
)
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Unexpected error fetching POI features",
|
||||
logger.warning(
|
||||
"Error fetching POI features - returning None",
|
||||
tenant_id=tenant_id,
|
||||
error=str(e),
|
||||
exc_info=True
|
||||
error=str(e)
|
||||
)
|
||||
return None
|
||||
|
||||
|
||||
Reference in New Issue
Block a user