refactor: Convert internal services to structured JSON reasoning
Convert pipe-separated reasoning codes to structured JSON format for: - Safety stock calculator (statistical calculations, errors) - Price forecaster (procurement recommendations, volatility) - Order optimization (EOQ, tier pricing) This enables i18n translation of internal calculation reasoning and provides structured data for frontend AI insights display. Benefits: - Consistent with PO/Batch reasoning_data format - Frontend can translate using same i18n infrastructure - Structured parameters enable rich UI visualization - No legacy string parsing needed Changes: - safety_stock_calculator.py: Replace reasoning str with reasoning_data dict - price_forecaster.py: Convert recommendation reasoning to structured format - optimization.py: Update EOQ and tier pricing to use reasoning_data Part of complete i18n implementation for AI insights.
This commit is contained in:
@@ -19,7 +19,7 @@ class OrderOptimizationResult:
|
||||
holding_cost: Decimal
|
||||
total_cost: Decimal
|
||||
orders_per_year: float
|
||||
reasoning: str
|
||||
reasoning_data: dict
|
||||
|
||||
|
||||
def calculate_economic_order_quantity(
|
||||
@@ -87,20 +87,36 @@ def optimize_order_quantity(
|
||||
# Start with EOQ or required quantity, whichever is larger
|
||||
optimal_qty = max(float(required_quantity), eoq)
|
||||
|
||||
# Build structured reasoning code with parameters
|
||||
reasoning_parts = [f"EOQ:BASE|eoq={eoq:.2f}|required={required_quantity}"]
|
||||
# Build structured reasoning data
|
||||
reasoning_data = {
|
||||
'type': 'eoq_base',
|
||||
'parameters': {
|
||||
'eoq': round(eoq, 2),
|
||||
'required_quantity': float(required_quantity),
|
||||
'annual_demand': round(annual_demand, 2),
|
||||
'ordering_cost': ordering_cost,
|
||||
'holding_cost_rate': holding_cost_rate
|
||||
},
|
||||
'constraints_applied': []
|
||||
}
|
||||
|
||||
# Apply minimum order quantity
|
||||
if min_order_qty and Decimal(optimal_qty) < min_order_qty:
|
||||
optimal_qty = float(min_order_qty)
|
||||
reasoning_parts.append(f"EOQ:MOQ_APPLIED|moq={min_order_qty}")
|
||||
reasoning_data['constraints_applied'].append({
|
||||
'type': 'moq_applied',
|
||||
'moq': float(min_order_qty)
|
||||
})
|
||||
|
||||
# Apply maximum order quantity
|
||||
if max_order_qty and Decimal(optimal_qty) > max_order_qty:
|
||||
optimal_qty = float(max_order_qty)
|
||||
reasoning_parts.append(f"EOQ:MAX_APPLIED|max={max_order_qty}")
|
||||
reasoning_data['constraints_applied'].append({
|
||||
'type': 'max_applied',
|
||||
'max_qty': float(max_order_qty)
|
||||
})
|
||||
|
||||
reasoning = "|".join(reasoning_parts)
|
||||
reasoning_data['parameters']['optimal_quantity'] = round(optimal_qty, 2)
|
||||
|
||||
# Calculate costs
|
||||
orders_per_year = annual_demand / optimal_qty if optimal_qty > 0 else 0
|
||||
@@ -114,7 +130,7 @@ def optimize_order_quantity(
|
||||
holding_cost=Decimal(str(annual_holding_cost)),
|
||||
total_cost=Decimal(str(total_annual_cost)),
|
||||
orders_per_year=orders_per_year,
|
||||
reasoning=reasoning
|
||||
reasoning_data=reasoning_data
|
||||
)
|
||||
|
||||
|
||||
@@ -180,7 +196,7 @@ def apply_price_tier_optimization(
|
||||
base_quantity: Decimal,
|
||||
unit_price: Decimal,
|
||||
price_tiers: List[Dict]
|
||||
) -> Tuple[Decimal, Decimal, str]:
|
||||
) -> Tuple[Decimal, Decimal, dict]:
|
||||
"""
|
||||
Optimize quantity to take advantage of price tiers.
|
||||
|
||||
@@ -190,10 +206,16 @@ def apply_price_tier_optimization(
|
||||
price_tiers: List of dicts with 'min_quantity' and 'unit_price'
|
||||
|
||||
Returns:
|
||||
Tuple of (optimized_quantity, unit_price, reasoning)
|
||||
Tuple of (optimized_quantity, unit_price, reasoning_data)
|
||||
"""
|
||||
if not price_tiers:
|
||||
return base_quantity, unit_price, "No price tiers available"
|
||||
return base_quantity, unit_price, {
|
||||
'type': 'no_tiers',
|
||||
'parameters': {
|
||||
'base_quantity': float(base_quantity),
|
||||
'unit_price': float(unit_price)
|
||||
}
|
||||
}
|
||||
|
||||
# Sort tiers by min_quantity
|
||||
sorted_tiers = sorted(price_tiers, key=lambda x: x['min_quantity'])
|
||||
@@ -211,7 +233,14 @@ def apply_price_tier_optimization(
|
||||
best_quantity = base_quantity
|
||||
best_price = current_tier_price
|
||||
best_savings = Decimal('0')
|
||||
reasoning = f"TIER_PRICING:CURRENT_TIER|price={current_tier_price}"
|
||||
reasoning_data = {
|
||||
'type': 'current_tier',
|
||||
'parameters': {
|
||||
'base_quantity': float(base_quantity),
|
||||
'current_tier_price': float(current_tier_price),
|
||||
'base_cost': float(base_cost)
|
||||
}
|
||||
}
|
||||
|
||||
for tier in sorted_tiers:
|
||||
tier_min_qty = Decimal(str(tier['min_quantity']))
|
||||
@@ -235,9 +264,19 @@ def apply_price_tier_optimization(
|
||||
best_quantity = tier_min_qty
|
||||
best_price = tier_price
|
||||
best_savings = savings
|
||||
reasoning = f"TIER_PRICING:UPGRADED|tier_min={tier_min_qty}|savings={savings:.2f}"
|
||||
reasoning_data = {
|
||||
'type': 'tier_upgraded',
|
||||
'parameters': {
|
||||
'base_quantity': float(base_quantity),
|
||||
'tier_min_qty': float(tier_min_qty),
|
||||
'base_price': float(current_tier_price),
|
||||
'tier_price': float(tier_price),
|
||||
'savings': round(float(savings), 2),
|
||||
'additional_qty': float(additional_qty)
|
||||
}
|
||||
}
|
||||
|
||||
return best_quantity, best_price, reasoning
|
||||
return best_quantity, best_price, reasoning_data
|
||||
|
||||
|
||||
def aggregate_requirements_for_moq(
|
||||
|
||||
Reference in New Issue
Block a user