Improve base config

This commit is contained in:
Urtzi Alfaro
2025-07-19 21:44:52 +02:00
parent c7fd6135f0
commit 9a67f3d175
11 changed files with 1278 additions and 285 deletions

View File

@@ -1,53 +1,65 @@
# ================================================================
# TRAINING SERVICE CONFIGURATION
# services/training/app/core/config.py
# ================================================================
"""
Training service configuration
ML model training and management
"""
from shared.config.base import BaseServiceSettings
import os
from pydantic_settings import BaseSettings
from typing import List
class Settings(BaseSettings):
"""Application settings"""
class TrainingSettings(BaseServiceSettings):
"""Training service specific settings"""
# Basic settings
# Service Identity
APP_NAME: str = "Training Service"
VERSION: str = "1.0.0"
DEBUG: bool = os.getenv("DEBUG", "False").lower() == "true"
LOG_LEVEL: str = os.getenv("LOG_LEVEL", "INFO")
SERVICE_NAME: str = "training-service"
DESCRIPTION: str = "Machine learning model training service"
# Database settings
DATABASE_URL: str = os.getenv("DATABASE_URL", "postgresql+asyncpg://training_user:training_pass123@training-db:5432/training_db")
# Database Configuration
DATABASE_URL: str = os.getenv("TRAINING_DATABASE_URL",
"postgresql+asyncpg://training_user:training_pass123@training-db:5432/training_db")
# Redis settings
REDIS_URL: str = os.getenv("REDIS_URL", "redis://redis:6379/1")
# Redis Database (dedicated for training cache)
REDIS_DB: int = 1
# RabbitMQ settings
RABBITMQ_URL: str = os.getenv("RABBITMQ_URL", "amqp://bakery:forecast123@rabbitmq:5672/")
# Service URLs
AUTH_SERVICE_URL: str = os.getenv("AUTH_SERVICE_URL", "http://auth-service:8000")
DATA_SERVICE_URL: str = os.getenv("DATA_SERVICE_URL", "http://data-service:8000")
# ML Settings
# ML Model Storage
MODEL_STORAGE_PATH: str = os.getenv("MODEL_STORAGE_PATH", "/app/models")
MODEL_BACKUP_ENABLED: bool = os.getenv("MODEL_BACKUP_ENABLED", "true").lower() == "true"
MODEL_VERSIONING_ENABLED: bool = os.getenv("MODEL_VERSIONING_ENABLED", "true").lower() == "true"
# Training Configuration
MAX_TRAINING_TIME_MINUTES: int = int(os.getenv("MAX_TRAINING_TIME_MINUTES", "30"))
MAX_CONCURRENT_TRAINING_JOBS: int = int(os.getenv("MAX_CONCURRENT_TRAINING_JOBS", "3"))
MIN_TRAINING_DATA_DAYS: int = int(os.getenv("MIN_TRAINING_DATA_DAYS", "30"))
TRAINING_BATCH_SIZE: int = int(os.getenv("TRAINING_BATCH_SIZE", "1000"))
# Prophet Settings
# Prophet Specific Configuration
PROPHET_SEASONALITY_MODE: str = os.getenv("PROPHET_SEASONALITY_MODE", "additive")
PROPHET_DAILY_SEASONALITY: bool = os.getenv("PROPHET_DAILY_SEASONALITY", "true").lower() == "true"
PROPHET_WEEKLY_SEASONALITY: bool = os.getenv("PROPHET_WEEKLY_SEASONALITY", "true").lower() == "true"
PROPHET_YEARLY_SEASONALITY: bool = os.getenv("PROPHET_YEARLY_SEASONALITY", "true").lower() == "true"
PROPHET_CHANGEPOINT_PRIOR_SCALE: float = float(os.getenv("PROPHET_CHANGEPOINT_PRIOR_SCALE", "0.05"))
PROPHET_SEASONALITY_PRIOR_SCALE: float = float(os.getenv("PROPHET_SEASONALITY_PRIOR_SCALE", "10.0"))
PROPHET_HOLIDAYS_PRIOR_SCALE: float = float(os.getenv("PROPHET_HOLIDAYS_PRIOR_SCALE", "10.0"))
# CORS
CORS_ORIGINS: str = os.getenv("CORS_ORIGINS", "http://localhost:3000,http://localhost:3001")
# Spanish Holiday Integration
ENABLE_SPANISH_HOLIDAYS: bool = True
ENABLE_MADRID_HOLIDAYS: bool = True
ENABLE_CUSTOM_HOLIDAYS: bool = os.getenv("ENABLE_CUSTOM_HOLIDAYS", "true").lower() == "true"
@property
def CORS_ORIGINS_LIST(self) -> List[str]:
"""Get CORS origins as list"""
return [origin.strip() for origin in self.CORS_ORIGINS.split(",")]
# Data Processing
DATA_PREPROCESSING_ENABLED: bool = True
OUTLIER_DETECTION_ENABLED: bool = os.getenv("OUTLIER_DETECTION_ENABLED", "true").lower() == "true"
SEASONAL_DECOMPOSITION_ENABLED: bool = os.getenv("SEASONAL_DECOMPOSITION_ENABLED", "true").lower() == "true"
class Config:
env_file = ".env"
# Model Validation
CROSS_VALIDATION_ENABLED: bool = os.getenv("CROSS_VALIDATION_ENABLED", "true").lower() == "true"
VALIDATION_SPLIT_RATIO: float = float(os.getenv("VALIDATION_SPLIT_RATIO", "0.2"))
MIN_MODEL_ACCURACY: float = float(os.getenv("MIN_MODEL_ACCURACY", "0.7"))
# Distributed Training (for future scaling)
DISTRIBUTED_TRAINING_ENABLED: bool = os.getenv("DISTRIBUTED_TRAINING_ENABLED", "false").lower() == "true"
TRAINING_WORKER_COUNT: int = int(os.getenv("TRAINING_WORKER_COUNT", "1"))
settings = Settings()
settings = TrainingSettings()