|
|
|
|
@@ -1,10 +1,14 @@
|
|
|
|
|
"""
|
|
|
|
|
Timezone Utility Functions
|
|
|
|
|
Centralized timezone handling to ensure consistency across the training service
|
|
|
|
|
ML-Specific DateTime Utilities
|
|
|
|
|
|
|
|
|
|
DateTime utilities for machine learning operations, specifically for:
|
|
|
|
|
- Prophet forecasting model (requires timezone-naive datetimes)
|
|
|
|
|
- Pandas DataFrame datetime operations
|
|
|
|
|
- Time series data processing
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from datetime import datetime, timezone
|
|
|
|
|
from typing import Optional, Union
|
|
|
|
|
from typing import Union
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
@@ -61,15 +65,12 @@ def normalize_datetime_to_utc(dt: Union[datetime, pd.Timestamp]) -> datetime:
|
|
|
|
|
if dt is None:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
# Handle pandas Timestamp
|
|
|
|
|
if isinstance(dt, pd.Timestamp):
|
|
|
|
|
dt = dt.to_pydatetime()
|
|
|
|
|
|
|
|
|
|
# If naive, assume UTC
|
|
|
|
|
if dt.tzinfo is None:
|
|
|
|
|
return dt.replace(tzinfo=timezone.utc)
|
|
|
|
|
|
|
|
|
|
# If aware but not UTC, convert to UTC
|
|
|
|
|
return dt.astimezone(timezone.utc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -93,19 +94,15 @@ def normalize_dataframe_datetime_column(
|
|
|
|
|
logger.warning(f"Column {column} not found in dataframe")
|
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
|
# Convert to datetime if not already
|
|
|
|
|
df[column] = pd.to_datetime(df[column])
|
|
|
|
|
|
|
|
|
|
if target_format == 'naive':
|
|
|
|
|
# Remove timezone if present
|
|
|
|
|
if df[column].dt.tz is not None:
|
|
|
|
|
df[column] = df[column].dt.tz_localize(None)
|
|
|
|
|
elif target_format == 'aware':
|
|
|
|
|
# Add UTC timezone if not present
|
|
|
|
|
if df[column].dt.tz is None:
|
|
|
|
|
df[column] = df[column].dt.tz_localize(timezone.utc)
|
|
|
|
|
else:
|
|
|
|
|
# Convert to UTC if different timezone
|
|
|
|
|
df[column] = df[column].dt.tz_convert(timezone.utc)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Invalid target_format: {target_format}. Must be 'naive' or 'aware'")
|
|
|
|
|
@@ -140,7 +137,6 @@ def safe_datetime_comparison(dt1: datetime, dt2: datetime) -> int:
|
|
|
|
|
Returns:
|
|
|
|
|
-1 if dt1 < dt2, 0 if equal, 1 if dt1 > dt2
|
|
|
|
|
"""
|
|
|
|
|
# Normalize both to UTC for comparison
|
|
|
|
|
dt1_utc = normalize_datetime_to_utc(dt1)
|
|
|
|
|
dt2_utc = normalize_datetime_to_utc(dt2)
|
|
|
|
|
|
|
|
|
|
@@ -176,9 +172,99 @@ def convert_timestamp_to_datetime(timestamp: Union[int, float, str]) -> datetime
|
|
|
|
|
dt = pd.to_datetime(timestamp)
|
|
|
|
|
return normalize_datetime_to_utc(dt)
|
|
|
|
|
|
|
|
|
|
# Check if milliseconds (typical JavaScript timestamp)
|
|
|
|
|
if timestamp > 1e10:
|
|
|
|
|
timestamp = timestamp / 1000
|
|
|
|
|
|
|
|
|
|
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
|
|
|
|
return dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def align_dataframe_dates(
|
|
|
|
|
dfs: list[pd.DataFrame],
|
|
|
|
|
date_column: str = 'ds',
|
|
|
|
|
method: str = 'inner'
|
|
|
|
|
) -> list[pd.DataFrame]:
|
|
|
|
|
"""
|
|
|
|
|
Align multiple dataframes to have the same date range.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dfs: List of DataFrames to align
|
|
|
|
|
date_column: Name of the date column
|
|
|
|
|
method: 'inner' (intersection) or 'outer' (union)
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of aligned DataFrames
|
|
|
|
|
"""
|
|
|
|
|
if not dfs:
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
if len(dfs) == 1:
|
|
|
|
|
return dfs
|
|
|
|
|
|
|
|
|
|
all_dates = None
|
|
|
|
|
|
|
|
|
|
for df in dfs:
|
|
|
|
|
if date_column not in df.columns:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
dates = set(pd.to_datetime(df[date_column]).dt.date)
|
|
|
|
|
|
|
|
|
|
if all_dates is None:
|
|
|
|
|
all_dates = dates
|
|
|
|
|
else:
|
|
|
|
|
if method == 'inner':
|
|
|
|
|
all_dates = all_dates.intersection(dates)
|
|
|
|
|
elif method == 'outer':
|
|
|
|
|
all_dates = all_dates.union(dates)
|
|
|
|
|
|
|
|
|
|
aligned_dfs = []
|
|
|
|
|
for df in dfs:
|
|
|
|
|
if date_column not in df.columns:
|
|
|
|
|
aligned_dfs.append(df)
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
df = df.copy()
|
|
|
|
|
df[date_column] = pd.to_datetime(df[date_column])
|
|
|
|
|
df['_date_only'] = df[date_column].dt.date
|
|
|
|
|
df = df[df['_date_only'].isin(all_dates)]
|
|
|
|
|
df = df.drop('_date_only', axis=1)
|
|
|
|
|
aligned_dfs.append(df)
|
|
|
|
|
|
|
|
|
|
return aligned_dfs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fill_missing_dates(
|
|
|
|
|
df: pd.DataFrame,
|
|
|
|
|
date_column: str = 'ds',
|
|
|
|
|
freq: str = 'D',
|
|
|
|
|
fill_value: float = 0.0
|
|
|
|
|
) -> pd.DataFrame:
|
|
|
|
|
"""
|
|
|
|
|
Fill missing dates in a DataFrame with a specified frequency.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
df: DataFrame with date column
|
|
|
|
|
date_column: Name of the date column
|
|
|
|
|
freq: Pandas frequency string ('D' for daily, 'H' for hourly, etc.)
|
|
|
|
|
fill_value: Value to fill for missing dates
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
DataFrame with filled dates
|
|
|
|
|
"""
|
|
|
|
|
df = df.copy()
|
|
|
|
|
df[date_column] = pd.to_datetime(df[date_column])
|
|
|
|
|
|
|
|
|
|
df = df.set_index(date_column)
|
|
|
|
|
|
|
|
|
|
full_range = pd.date_range(
|
|
|
|
|
start=df.index.min(),
|
|
|
|
|
end=df.index.max(),
|
|
|
|
|
freq=freq
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
df = df.reindex(full_range, fill_value=fill_value)
|
|
|
|
|
|
|
|
|
|
df = df.reset_index()
|
|
|
|
|
df = df.rename(columns={'index': date_column})
|
|
|
|
|
|
|
|
|
|
return df
|