Improve backend

This commit is contained in:
Urtzi Alfaro
2025-11-18 07:17:17 +01:00
parent d36f2ab9af
commit 5c45164c8e
61 changed files with 9846 additions and 495 deletions

View File

@@ -0,0 +1,297 @@
# ================================================================
# services/forecasting/app/api/retraining.py
# ================================================================
"""
Retraining API - Trigger and manage model retraining based on performance
"""
from fastapi import APIRouter, Depends, HTTPException, Path, Query, status
from typing import Dict, Any, List
from uuid import UUID
import structlog
from pydantic import BaseModel, Field
from app.services.retraining_trigger_service import RetrainingTriggerService
from shared.auth.decorators import get_current_user_dep
from shared.auth.access_control import require_user_role
from shared.routing import RouteBuilder
from app.core.database import get_db
from sqlalchemy.ext.asyncio import AsyncSession
route_builder = RouteBuilder('forecasting')
router = APIRouter(tags=["retraining"])
logger = structlog.get_logger()
# ================================================================
# Request/Response Schemas
# ================================================================
class EvaluateRetrainingRequest(BaseModel):
"""Request model for retraining evaluation"""
auto_trigger: bool = Field(
default=False,
description="Automatically trigger retraining for poor performers"
)
class TriggerProductRetrainingRequest(BaseModel):
"""Request model for single product retraining"""
inventory_product_id: UUID = Field(..., description="Product to retrain")
reason: str = Field(..., description="Reason for retraining")
priority: str = Field(
default="normal",
description="Priority level: low, normal, high"
)
class TriggerBulkRetrainingRequest(BaseModel):
"""Request model for bulk retraining"""
product_ids: List[UUID] = Field(..., description="List of products to retrain")
reason: str = Field(
default="Bulk retraining requested",
description="Reason for bulk retraining"
)
class ScheduledRetrainingCheckRequest(BaseModel):
"""Request model for scheduled retraining check"""
max_model_age_days: int = Field(
default=30,
ge=1,
le=90,
description="Maximum acceptable model age"
)
# ================================================================
# Endpoints
# ================================================================
@router.post(
route_builder.build_base_route("retraining/evaluate"),
status_code=status.HTTP_200_OK
)
@require_user_role(['admin', 'owner'])
async def evaluate_retraining_needs(
request: EvaluateRetrainingRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
db: AsyncSession = Depends(get_db)
):
"""
Evaluate performance and optionally trigger retraining
Analyzes 30-day performance and identifies products needing retraining.
If auto_trigger=true, automatically triggers retraining for poor performers.
"""
try:
logger.info(
"Evaluating retraining needs",
tenant_id=tenant_id,
auto_trigger=request.auto_trigger,
user_id=current_user.get("user_id")
)
service = RetrainingTriggerService(db)
result = await service.evaluate_and_trigger_retraining(
tenant_id=tenant_id,
auto_trigger=request.auto_trigger
)
return result
except Exception as e:
logger.error(
"Failed to evaluate retraining needs",
tenant_id=tenant_id,
error=str(e)
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to evaluate retraining: {str(e)}"
)
@router.post(
route_builder.build_base_route("retraining/trigger-product"),
status_code=status.HTTP_200_OK
)
@require_user_role(['admin', 'owner'])
async def trigger_product_retraining(
request: TriggerProductRetrainingRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
db: AsyncSession = Depends(get_db)
):
"""
Trigger retraining for a specific product
Manually trigger model retraining for a single product.
"""
try:
logger.info(
"Triggering product retraining",
tenant_id=tenant_id,
product_id=request.inventory_product_id,
reason=request.reason,
user_id=current_user.get("user_id")
)
service = RetrainingTriggerService(db)
result = await service._trigger_product_retraining(
tenant_id=tenant_id,
inventory_product_id=request.inventory_product_id,
reason=request.reason,
priority=request.priority
)
return result
except Exception as e:
logger.error(
"Failed to trigger product retraining",
tenant_id=tenant_id,
product_id=request.inventory_product_id,
error=str(e)
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to trigger retraining: {str(e)}"
)
@router.post(
route_builder.build_base_route("retraining/trigger-bulk"),
status_code=status.HTTP_200_OK
)
@require_user_role(['admin', 'owner'])
async def trigger_bulk_retraining(
request: TriggerBulkRetrainingRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
db: AsyncSession = Depends(get_db)
):
"""
Trigger retraining for multiple products
Bulk retraining operation for multiple products at once.
"""
try:
logger.info(
"Triggering bulk retraining",
tenant_id=tenant_id,
product_count=len(request.product_ids),
reason=request.reason,
user_id=current_user.get("user_id")
)
service = RetrainingTriggerService(db)
result = await service.trigger_bulk_retraining(
tenant_id=tenant_id,
product_ids=request.product_ids,
reason=request.reason
)
return result
except Exception as e:
logger.error(
"Failed to trigger bulk retraining",
tenant_id=tenant_id,
error=str(e)
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to trigger bulk retraining: {str(e)}"
)
@router.get(
route_builder.build_base_route("retraining/recommendations"),
status_code=status.HTTP_200_OK
)
@require_user_role(['admin', 'owner', 'member'])
async def get_retraining_recommendations(
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
db: AsyncSession = Depends(get_db)
):
"""
Get retraining recommendations without triggering
Returns recommendations for manual review and decision-making.
"""
try:
logger.info(
"Getting retraining recommendations",
tenant_id=tenant_id,
user_id=current_user.get("user_id")
)
service = RetrainingTriggerService(db)
recommendations = await service.get_retraining_recommendations(
tenant_id=tenant_id
)
return recommendations
except Exception as e:
logger.error(
"Failed to get recommendations",
tenant_id=tenant_id,
error=str(e)
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to get recommendations: {str(e)}"
)
@router.post(
route_builder.build_base_route("retraining/check-scheduled"),
status_code=status.HTTP_200_OK
)
@require_user_role(['admin', 'owner'])
async def check_scheduled_retraining(
request: ScheduledRetrainingCheckRequest,
tenant_id: UUID = Path(..., description="Tenant ID"),
current_user: Dict[str, Any] = Depends(get_current_user_dep),
db: AsyncSession = Depends(get_db)
):
"""
Check for models needing scheduled retraining based on age
Identifies models that haven't been updated in max_model_age_days.
"""
try:
logger.info(
"Checking scheduled retraining needs",
tenant_id=tenant_id,
max_model_age_days=request.max_model_age_days,
user_id=current_user.get("user_id")
)
service = RetrainingTriggerService(db)
result = await service.check_and_trigger_scheduled_retraining(
tenant_id=tenant_id,
max_model_age_days=request.max_model_age_days
)
return result
except Exception as e:
logger.error(
"Failed to check scheduled retraining",
tenant_id=tenant_id,
error=str(e)
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to check scheduled retraining: {str(e)}"
)