Fix multiple critical bugs in onboarding training step
This commit addresses all identified bugs and issues in the training code path: ## Critical Fixes: - Add get_start_time() method to TrainingLogRepository and fix non-existent method call - Remove duplicate training.started event from API endpoint (trainer publishes the accurate one) - Add missing progress events for 80-100% range (85%, 92%, 94%) to eliminate progress "dead zone" ## High Priority Fixes: - Fix division by zero risk in time estimation with double-check and max() safety - Remove unreachable exception handler in training_operations.py - Simplify WebSocket token refresh logic to only reconnect on actual user session changes ## Medium Priority Fixes: - Fix auto-start training effect with useRef to prevent duplicate starts - Add HTTP polling debounce delay (5s) to prevent race conditions with WebSocket - Extract all magic numbers to centralized constants files: - Backend: services/training/app/core/training_constants.py - Frontend: frontend/src/constants/training.ts - Standardize error logging with exc_info=True on critical errors ## Code Quality Improvements: - All progress percentages now use named constants - All timeouts and intervals now use named constants - Improved code maintainability and readability - Better separation of concerns ## Files Changed: - Backend: training_service.py, trainer.py, training_events.py, progress_tracker.py - Backend: training_operations.py, training_log_repository.py, training_constants.py (new) - Frontend: training.ts (hooks), MLTrainingStep.tsx, training.ts (constants, new) All training progress events now properly flow from 0% to 100% with no gaps.
This commit is contained in:
@@ -189,15 +189,8 @@ async def start_training_job(
|
||||
# Calculate estimated completion time
|
||||
estimated_completion_time = calculate_estimated_completion_time(estimated_duration_minutes)
|
||||
|
||||
# Publish training.started event immediately so WebSocket clients
|
||||
# have initial state when they connect
|
||||
await publish_training_started(
|
||||
job_id=job_id,
|
||||
tenant_id=tenant_id,
|
||||
total_products=0, # Will be updated when actual training starts
|
||||
estimated_duration_minutes=estimated_duration_minutes,
|
||||
estimated_completion_time=estimated_completion_time.isoformat()
|
||||
)
|
||||
# Note: training.started event will be published by the trainer with accurate product count
|
||||
# We don't publish here to avoid duplicate events
|
||||
|
||||
# Add enhanced background task
|
||||
background_tasks.add_task(
|
||||
@@ -401,11 +394,6 @@ async def execute_training_job_background(
|
||||
# Failure event is published by the training service
|
||||
await publish_training_failed(job_id, tenant_id, str(training_error))
|
||||
|
||||
except Exception as background_error:
|
||||
logger.error("Critical error in enhanced background training job",
|
||||
job_id=job_id,
|
||||
error=str(background_error))
|
||||
|
||||
finally:
|
||||
logger.info("Enhanced background training job cleanup completed",
|
||||
job_id=job_id)
|
||||
|
||||
Reference in New Issue
Block a user