REFACTOR external service and improve websocket training

This commit is contained in:
Urtzi Alfaro
2025-10-09 14:11:02 +02:00
parent 7c72f83c51
commit 3c689b4f98
111 changed files with 13289 additions and 2374 deletions

View File

@@ -3,16 +3,12 @@ ML Pipeline Components
Machine learning training and prediction components
"""
from .trainer import BakeryMLTrainer
from .trainer import EnhancedBakeryMLTrainer
from .data_processor import BakeryDataProcessor
from .data_processor import EnhancedBakeryDataProcessor
from .prophet_manager import BakeryProphetManager
__all__ = [
"BakeryMLTrainer",
"EnhancedBakeryMLTrainer",
"BakeryDataProcessor",
"EnhancedBakeryDataProcessor",
"BakeryProphetManager"
]

View File

@@ -865,8 +865,4 @@ class EnhancedBakeryDataProcessor:
except Exception as e:
logger.error("Error generating data quality report", error=str(e))
return {"error": str(e)}
# Legacy compatibility alias
BakeryDataProcessor = EnhancedBakeryDataProcessor
return {"error": str(e)}

View File

@@ -32,6 +32,10 @@ import optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
from app.core.config import settings
from app.core import constants as const
from app.utils.timezone_utils import prepare_prophet_datetime
from app.utils.file_utils import ChecksummedFile, calculate_file_checksum
from app.utils.distributed_lock import get_training_lock, LockAcquisitionError
logger = logging.getLogger(__name__)
@@ -50,72 +54,79 @@ class BakeryProphetManager:
# Ensure model storage directory exists
os.makedirs(settings.MODEL_STORAGE_PATH, exist_ok=True)
async def train_bakery_model(self,
tenant_id: str,
inventory_product_id: str,
async def train_bakery_model(self,
tenant_id: str,
inventory_product_id: str,
df: pd.DataFrame,
job_id: str) -> Dict[str, Any]:
"""
Train a Prophet model with automatic hyperparameter optimization.
Same interface as before - optimization happens automatically.
Train a Prophet model with automatic hyperparameter optimization and distributed locking.
"""
# Acquire distributed lock to prevent concurrent training of same product
lock = get_training_lock(tenant_id, inventory_product_id, use_advisory=True)
try:
logger.info(f"Training optimized bakery model for {inventory_product_id}")
# Validate input data
await self._validate_training_data(df, inventory_product_id)
# Prepare data for Prophet
prophet_data = await self._prepare_prophet_data(df)
# Get regressor columns
regressor_columns = self._extract_regressor_columns(prophet_data)
# Automatically optimize hyperparameters (this is the new part)
logger.info(f"Optimizing hyperparameters for {inventory_product_id}...")
best_params = await self._optimize_hyperparameters(prophet_data, inventory_product_id, regressor_columns)
# Create optimized Prophet model
model = self._create_optimized_prophet_model(best_params, regressor_columns)
# Add regressors to model
for regressor in regressor_columns:
if regressor in prophet_data.columns:
model.add_regressor(regressor)
# Fit the model
model.fit(prophet_data)
# Calculate enhanced training metrics first
training_metrics = await self._calculate_training_metrics(model, prophet_data, best_params)
# Store model and metrics - Generate proper UUID for model_id
model_id = str(uuid.uuid4())
model_path = await self._store_model(
tenant_id, inventory_product_id, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
)
# Return same format as before, but with optimization info
model_info = {
"model_id": model_id,
"model_path": model_path,
"type": "prophet_optimized", # Changed from "prophet"
"training_samples": len(prophet_data),
"features": regressor_columns,
"hyperparameters": best_params, # Now contains optimized params
"training_metrics": training_metrics,
"trained_at": datetime.now().isoformat(),
"data_period": {
"start_date": prophet_data['ds'].min().isoformat(),
"end_date": prophet_data['ds'].max().isoformat(),
"total_days": len(prophet_data)
}
}
logger.info(f"Optimized model trained successfully for {inventory_product_id}. "
f"MAPE: {training_metrics.get('optimized_mape', 'N/A')}%")
return model_info
async with self.database_manager.get_session() as session:
async with lock.acquire(session):
logger.info(f"Training optimized bakery model for {inventory_product_id} (lock acquired)")
# Validate input data
await self._validate_training_data(df, inventory_product_id)
# Prepare data for Prophet
prophet_data = await self._prepare_prophet_data(df)
# Get regressor columns
regressor_columns = self._extract_regressor_columns(prophet_data)
# Automatically optimize hyperparameters
logger.info(f"Optimizing hyperparameters for {inventory_product_id}...")
best_params = await self._optimize_hyperparameters(prophet_data, inventory_product_id, regressor_columns)
# Create optimized Prophet model
model = self._create_optimized_prophet_model(best_params, regressor_columns)
# Add regressors to model
for regressor in regressor_columns:
if regressor in prophet_data.columns:
model.add_regressor(regressor)
# Fit the model
model.fit(prophet_data)
# Calculate enhanced training metrics first
training_metrics = await self._calculate_training_metrics(model, prophet_data, best_params)
# Store model and metrics - Generate proper UUID for model_id
model_id = str(uuid.uuid4())
model_path = await self._store_model(
tenant_id, inventory_product_id, model, model_id, prophet_data, regressor_columns, best_params, training_metrics
)
# Return same format as before, but with optimization info
model_info = {
"model_id": model_id,
"model_path": model_path,
"type": "prophet_optimized",
"training_samples": len(prophet_data),
"features": regressor_columns,
"hyperparameters": best_params,
"training_metrics": training_metrics,
"trained_at": datetime.now().isoformat(),
"data_period": {
"start_date": prophet_data['ds'].min().isoformat(),
"end_date": prophet_data['ds'].max().isoformat(),
"total_days": len(prophet_data)
}
}
logger.info(f"Optimized model trained successfully for {inventory_product_id}. "
f"MAPE: {training_metrics.get('optimized_mape', 'N/A')}%")
return model_info
except LockAcquisitionError as e:
logger.warning(f"Could not acquire lock for {inventory_product_id}: {e}")
raise RuntimeError(f"Training already in progress for product {inventory_product_id}")
except Exception as e:
logger.error(f"Failed to train optimized bakery model for {inventory_product_id}: {str(e)}")
raise
@@ -134,11 +145,11 @@ class BakeryProphetManager:
# Set optimization parameters based on category
n_trials = {
'high_volume': 30, # Reduced from 75 for speed
'medium_volume': 25, # Reduced from 50
'low_volume': 20, # Reduced from 30
'intermittent': 15 # Reduced from 25
}.get(product_category, 25)
'high_volume': const.OPTUNA_TRIALS_HIGH_VOLUME,
'medium_volume': const.OPTUNA_TRIALS_MEDIUM_VOLUME,
'low_volume': const.OPTUNA_TRIALS_LOW_VOLUME,
'intermittent': const.OPTUNA_TRIALS_INTERMITTENT
}.get(product_category, const.OPTUNA_TRIALS_MEDIUM_VOLUME)
logger.info(f"Product {inventory_product_id} classified as {product_category}, using {n_trials} trials")
@@ -152,7 +163,7 @@ class BakeryProphetManager:
f"zero_ratio={zero_ratio:.2f}, mean_sales={mean_sales:.2f}, non_zero_days={non_zero_days}")
# Adjust strategy based on data characteristics
if zero_ratio > 0.8 or non_zero_days < 30:
if zero_ratio > const.MAX_ZERO_RATIO_INTERMITTENT or non_zero_days < const.MIN_NON_ZERO_DAYS:
logger.warning(f"Very sparse data for {inventory_product_id}, using minimal optimization")
return {
'changepoint_prior_scale': 0.001,
@@ -163,9 +174,9 @@ class BakeryProphetManager:
'daily_seasonality': False,
'weekly_seasonality': True,
'yearly_seasonality': False,
'uncertainty_samples': 100 # ✅ FIX: Minimal uncertainty sampling for very sparse data
'uncertainty_samples': const.UNCERTAINTY_SAMPLES_SPARSE_MIN
}
elif zero_ratio > 0.6:
elif zero_ratio > const.MODERATE_SPARSITY_THRESHOLD:
logger.info(f"Moderate sparsity for {inventory_product_id}, using conservative optimization")
return {
'changepoint_prior_scale': 0.01,
@@ -175,8 +186,8 @@ class BakeryProphetManager:
'seasonality_mode': 'additive',
'daily_seasonality': False,
'weekly_seasonality': True,
'yearly_seasonality': len(df) > 365, # Only if we have enough data
'uncertainty_samples': 200 # ✅ FIX: Conservative uncertainty sampling for moderately sparse data
'yearly_seasonality': len(df) > const.DATA_QUALITY_DAY_THRESHOLD_HIGH,
'uncertainty_samples': const.UNCERTAINTY_SAMPLES_SPARSE_MAX
}
# Use unique seed for each product to avoid identical results
@@ -198,15 +209,15 @@ class BakeryProphetManager:
changepoint_scale_range = (0.001, 0.5)
seasonality_scale_range = (0.01, 10.0)
# ✅ FIX: Determine appropriate uncertainty samples range based on product category
# Determine appropriate uncertainty samples range based on product category
if product_category == 'high_volume':
uncertainty_range = (300, 800) # More samples for stable high-volume products
uncertainty_range = (const.UNCERTAINTY_SAMPLES_HIGH_MIN, const.UNCERTAINTY_SAMPLES_HIGH_MAX)
elif product_category == 'medium_volume':
uncertainty_range = (200, 500) # Moderate samples for medium volume
uncertainty_range = (const.UNCERTAINTY_SAMPLES_MEDIUM_MIN, const.UNCERTAINTY_SAMPLES_MEDIUM_MAX)
elif product_category == 'low_volume':
uncertainty_range = (150, 300) # Fewer samples for low volume
uncertainty_range = (const.UNCERTAINTY_SAMPLES_LOW_MIN, const.UNCERTAINTY_SAMPLES_LOW_MAX)
else: # intermittent
uncertainty_range = (100, 200) # Minimal samples for intermittent demand
uncertainty_range = (const.UNCERTAINTY_SAMPLES_SPARSE_MIN, const.UNCERTAINTY_SAMPLES_SPARSE_MAX)
params = {
'changepoint_prior_scale': trial.suggest_float(
@@ -295,10 +306,10 @@ class BakeryProphetManager:
# Run optimization with product-specific seed
study = optuna.create_study(
direction='minimize',
sampler=optuna.samplers.TPESampler(seed=product_seed) # Unique seed per product
direction='minimize',
sampler=optuna.samplers.TPESampler(seed=product_seed)
)
study.optimize(objective, n_trials=n_trials, timeout=600, show_progress_bar=False)
study.optimize(objective, n_trials=n_trials, timeout=const.OPTUNA_TIMEOUT_SECONDS, show_progress_bar=False)
# Return best parameters
best_params = study.best_params
@@ -515,8 +526,12 @@ class BakeryProphetManager:
# Store model file
model_path = model_dir / f"{model_id}.pkl"
joblib.dump(model, model_path)
# Enhanced metadata
# Calculate checksum for model file integrity
checksummed_file = ChecksummedFile(str(model_path))
model_checksum = checksummed_file.calculate_and_save_checksum()
# Enhanced metadata with checksum
metadata = {
"model_id": model_id,
"tenant_id": tenant_id,
@@ -531,9 +546,11 @@ class BakeryProphetManager:
"optimized_parameters": optimized_params or {},
"created_at": datetime.now().isoformat(),
"model_type": "prophet_optimized",
"file_path": str(model_path)
"file_path": str(model_path),
"checksum": model_checksum,
"checksum_algorithm": "sha256"
}
metadata_path = model_path.with_suffix('.json')
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2, default=str)
@@ -609,23 +626,29 @@ class BakeryProphetManager:
logger.error(f"Failed to deactivate previous models: {str(e)}")
raise
# Keep all existing methods unchanged
async def generate_forecast(self,
async def generate_forecast(self,
model_path: str,
future_dates: pd.DataFrame,
regressor_columns: List[str]) -> pd.DataFrame:
"""Generate forecast using stored model (unchanged)"""
"""Generate forecast using stored model with checksum verification"""
try:
# Verify model file integrity before loading
checksummed_file = ChecksummedFile(model_path)
if not checksummed_file.load_and_verify_checksum():
logger.warning(f"Checksum verification failed for model: {model_path}")
# Still load the model but log warning
# In production, you might want to raise an exception instead
model = joblib.load(model_path)
for regressor in regressor_columns:
if regressor not in future_dates.columns:
logger.warning(f"Missing regressor {regressor}, filling with median")
future_dates[regressor] = 0
forecast = model.predict(future_dates)
return forecast
except Exception as e:
logger.error(f"Failed to generate forecast: {str(e)}")
raise
@@ -655,34 +678,28 @@ class BakeryProphetManager:
async def _prepare_prophet_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Prepare data for Prophet training with timezone handling"""
prophet_data = df.copy()
if 'ds' not in prophet_data.columns:
raise ValueError("Missing 'ds' column in training data")
if 'y' not in prophet_data.columns:
raise ValueError("Missing 'y' column in training data")
# Convert to datetime and remove timezone information
prophet_data['ds'] = pd.to_datetime(prophet_data['ds'])
# Remove timezone if present (Prophet doesn't support timezones)
if prophet_data['ds'].dt.tz is not None:
logger.info("Removing timezone information from 'ds' column for Prophet compatibility")
prophet_data['ds'] = prophet_data['ds'].dt.tz_localize(None)
# Use timezone utility to prepare Prophet-compatible datetime
prophet_data = prepare_prophet_datetime(prophet_data, 'ds')
# Sort by date and clean data
prophet_data = prophet_data.sort_values('ds').reset_index(drop=True)
prophet_data['y'] = pd.to_numeric(prophet_data['y'], errors='coerce')
prophet_data = prophet_data.dropna(subset=['y'])
# Additional data cleaning for Prophet
# Remove any duplicate dates (keep last occurrence)
prophet_data = prophet_data.drop_duplicates(subset=['ds'], keep='last')
# Ensure y values are non-negative (Prophet works better with non-negative values)
# Ensure y values are non-negative
prophet_data['y'] = prophet_data['y'].clip(lower=0)
logger.info(f"Prepared Prophet data: {len(prophet_data)} rows, date range: {prophet_data['ds'].min()} to {prophet_data['ds'].max()}")
return prophet_data
def _extract_regressor_columns(self, df: pd.DataFrame) -> List[str]:

View File

@@ -10,6 +10,7 @@ from datetime import datetime
import structlog
import uuid
import time
import asyncio
from app.ml.data_processor import EnhancedBakeryDataProcessor
from app.ml.prophet_manager import BakeryProphetManager
@@ -28,7 +29,13 @@ from app.repositories import (
ArtifactRepository
)
from app.services.messaging import TrainingStatusPublisher
from app.services.progress_tracker import ParallelProductProgressTracker
from app.services.training_events import (
publish_training_started,
publish_data_analysis,
publish_training_completed,
publish_training_failed
)
logger = structlog.get_logger()
@@ -75,8 +82,6 @@ class EnhancedBakeryMLTrainer:
job_id=job_id,
tenant_id=tenant_id)
self.status_publisher = TrainingStatusPublisher(job_id, tenant_id)
try:
# Get database session and repositories
async with self.database_manager.get_session() as db_session:
@@ -113,8 +118,10 @@ class EnhancedBakeryMLTrainer:
else:
logger.info("Multiple products detected for training",
products_count=len(products))
self.status_publisher.products_total = len(products)
# Event 1: Training Started (0%) - update with actual product count
# Note: Initial event was already published by API endpoint, this updates with real count
await publish_training_started(job_id, tenant_id, len(products))
# Create initial training log entry
await repos['training_log'].update_log_progress(
@@ -126,28 +133,45 @@ class EnhancedBakeryMLTrainer:
processed_data = await self._process_all_products_enhanced(
sales_df, weather_df, traffic_df, products, tenant_id, job_id
)
await self.status_publisher.progress_update(
progress=20,
step="feature_engineering",
step_details="Enhanced processing with repository tracking"
# Event 2: Data Analysis (20%)
await publish_data_analysis(
job_id,
tenant_id,
f"Data analysis completed for {len(processed_data)} products"
)
# Train models for each processed product
logger.info("Training models with repository integration")
# Train models for each processed product with progress aggregation
logger.info("Training models with repository integration and progress aggregation")
# Create progress tracker for parallel product training (20-80%)
progress_tracker = ParallelProductProgressTracker(
job_id=job_id,
tenant_id=tenant_id,
total_products=len(processed_data)
)
training_results = await self._train_all_models_enhanced(
tenant_id, processed_data, job_id, repos
tenant_id, processed_data, job_id, repos, progress_tracker
)
# Calculate overall training summary with enhanced metrics
summary = await self._calculate_enhanced_training_summary(
training_results, repos, tenant_id
)
await self.status_publisher.progress_update(
progress=90,
step="model_validation",
step_details="Enhanced validation with repository tracking"
# Calculate successful and failed trainings
successful_trainings = len([r for r in training_results.values() if r.get('status') == 'success'])
failed_trainings = len([r for r in training_results.values() if r.get('status') == 'error'])
total_duration = sum([r.get('training_time_seconds', 0) for r in training_results.values()])
# Event 4: Training Completed (100%)
await publish_training_completed(
job_id,
tenant_id,
successful_trainings,
failed_trainings,
total_duration
)
# Create comprehensive result with repository data
@@ -189,6 +213,10 @@ class EnhancedBakeryMLTrainer:
logger.error("Enhanced ML training pipeline failed",
job_id=job_id,
error=str(e))
# Publish training failed event
await publish_training_failed(job_id, tenant_id, str(e))
raise
async def _process_all_products_enhanced(self,
@@ -237,111 +265,158 @@ class EnhancedBakeryMLTrainer:
return processed_data
async def _train_single_product(self,
tenant_id: str,
inventory_product_id: str,
product_data: pd.DataFrame,
job_id: str,
repos: Dict,
progress_tracker: ParallelProductProgressTracker) -> tuple[str, Dict[str, Any]]:
"""Train a single product model - used for parallel execution with progress aggregation"""
product_start_time = time.time()
try:
logger.info("Training model", inventory_product_id=inventory_product_id)
# Check if we have enough data
if len(product_data) < settings.MIN_TRAINING_DATA_DAYS:
result = {
'status': 'skipped',
'reason': 'insufficient_data',
'data_points': len(product_data),
'min_required': settings.MIN_TRAINING_DATA_DAYS,
'message': f'Need at least {settings.MIN_TRAINING_DATA_DAYS} data points, got {len(product_data)}'
}
logger.warning("Skipping product due to insufficient data",
inventory_product_id=inventory_product_id,
data_points=len(product_data),
min_required=settings.MIN_TRAINING_DATA_DAYS)
return inventory_product_id, result
# Train the model using Prophet manager
model_info = await self.prophet_manager.train_bakery_model(
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
df=product_data,
job_id=job_id
)
# Store model record using repository
model_record = await self._create_model_record(
repos, tenant_id, inventory_product_id, model_info, job_id, product_data
)
# Create performance metrics record
if model_info.get('training_metrics'):
await self._create_performance_metrics(
repos, model_record.id if model_record else None,
tenant_id, inventory_product_id, model_info['training_metrics']
)
result = {
'status': 'success',
'model_info': model_info,
'model_record_id': model_record.id if model_record else None,
'data_points': len(product_data),
'training_time_seconds': time.time() - product_start_time,
'trained_at': datetime.now().isoformat()
}
logger.info("Successfully trained model",
inventory_product_id=inventory_product_id,
model_record_id=model_record.id if model_record else None)
# Report completion to progress tracker (emits Event 3: product_completed)
await progress_tracker.mark_product_completed(inventory_product_id)
return inventory_product_id, result
except Exception as e:
logger.error("Failed to train model",
inventory_product_id=inventory_product_id,
error=str(e))
result = {
'status': 'error',
'error_message': str(e),
'data_points': len(product_data) if product_data is not None else 0,
'training_time_seconds': time.time() - product_start_time,
'failed_at': datetime.now().isoformat()
}
# Report failure to progress tracker (still emits Event 3: product_completed)
await progress_tracker.mark_product_completed(inventory_product_id)
return inventory_product_id, result
async def _train_all_models_enhanced(self,
tenant_id: str,
processed_data: Dict[str, pd.DataFrame],
job_id: str,
repos: Dict) -> Dict[str, Any]:
"""Train models with enhanced repository integration"""
training_results = {}
i = 0
repos: Dict,
progress_tracker: ParallelProductProgressTracker) -> Dict[str, Any]:
"""Train models with throttled parallel execution and progress tracking"""
total_products = len(processed_data)
base_progress = 45
max_progress = 85
logger.info(f"Starting throttled parallel training for {total_products} products")
# Create training tasks for all products
training_tasks = [
self._train_single_product(
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
product_data=product_data,
job_id=job_id,
repos=repos,
progress_tracker=progress_tracker
)
for inventory_product_id, product_data in processed_data.items()
]
# Execute training tasks with throttling to prevent heartbeat blocking
# Limit concurrent operations to prevent CPU/memory exhaustion
from app.core.config import settings
max_concurrent = getattr(settings, 'MAX_CONCURRENT_TRAININGS', 3)
for inventory_product_id, product_data in processed_data.items():
product_start_time = time.time()
try:
logger.info("Training enhanced model",
inventory_product_id=inventory_product_id)
# Check if we have enough data
if len(product_data) < settings.MIN_TRAINING_DATA_DAYS:
training_results[inventory_product_id] = {
'status': 'skipped',
'reason': 'insufficient_data',
'data_points': len(product_data),
'min_required': settings.MIN_TRAINING_DATA_DAYS,
'message': f'Need at least {settings.MIN_TRAINING_DATA_DAYS} data points, got {len(product_data)}'
}
logger.warning("Skipping product due to insufficient data",
inventory_product_id=inventory_product_id,
data_points=len(product_data),
min_required=settings.MIN_TRAINING_DATA_DAYS)
continue
# Train the model using Prophet manager
model_info = await self.prophet_manager.train_bakery_model(
tenant_id=tenant_id,
inventory_product_id=inventory_product_id,
df=product_data,
job_id=job_id
)
# Store model record using repository
model_record = await self._create_model_record(
repos, tenant_id, inventory_product_id, model_info, job_id, product_data
)
# Create performance metrics record
if model_info.get('training_metrics'):
await self._create_performance_metrics(
repos, model_record.id if model_record else None,
tenant_id, inventory_product_id, model_info['training_metrics']
)
training_results[inventory_product_id] = {
'status': 'success',
'model_info': model_info,
'model_record_id': model_record.id if model_record else None,
'data_points': len(product_data),
'training_time_seconds': time.time() - product_start_time,
'trained_at': datetime.now().isoformat()
}
logger.info("Successfully trained enhanced model",
inventory_product_id=inventory_product_id,
model_record_id=model_record.id if model_record else None)
completed_products = i + 1
i += 1
progress = base_progress + int((completed_products / total_products) * (max_progress - base_progress))
if self.status_publisher:
self.status_publisher.products_completed = completed_products
await self.status_publisher.progress_update(
progress=progress,
step="model_training",
current_product=inventory_product_id,
step_details=f"Enhanced training completed for {inventory_product_id}"
)
except Exception as e:
logger.error("Failed to train enhanced model",
inventory_product_id=inventory_product_id,
error=str(e))
training_results[inventory_product_id] = {
'status': 'error',
'error_message': str(e),
'data_points': len(product_data) if product_data is not None else 0,
'training_time_seconds': time.time() - product_start_time,
'failed_at': datetime.now().isoformat()
}
completed_products = i + 1
i += 1
progress = base_progress + int((completed_products / total_products) * (max_progress - base_progress))
if self.status_publisher:
self.status_publisher.products_completed = completed_products
await self.status_publisher.progress_update(
progress=progress,
step="model_training",
current_product=inventory_product_id,
step_details=f"Enhanced training failed for {inventory_product_id}: {str(e)}"
)
logger.info(f"Executing training with max {max_concurrent} concurrent operations",
total_products=total_products)
# Process tasks in batches to prevent blocking the event loop
results_list = []
for i in range(0, len(training_tasks), max_concurrent):
batch = training_tasks[i:i + max_concurrent]
batch_results = await asyncio.gather(*batch, return_exceptions=True)
results_list.extend(batch_results)
# Yield control to event loop to allow heartbeat processing
# Increased from 0.01s to 0.1s (100ms) to ensure WebSocket pings, RabbitMQ heartbeats,
# and progress events can be processed during long training operations
await asyncio.sleep(0.1)
# Log progress to verify event loop is responsive
logger.debug(
"Training batch completed, yielding to event loop",
batch_num=(i // max_concurrent) + 1,
total_batches=(len(training_tasks) + max_concurrent - 1) // max_concurrent,
products_completed=len(results_list),
total_products=len(training_tasks)
)
# Log final summary
summary = progress_tracker.get_progress()
logger.info("Throttled parallel training completed",
total=summary['total_products'],
completed=summary['products_completed'])
# Convert results to dictionary
training_results = {}
for result in results_list:
if isinstance(result, Exception):
logger.error(f"Training task failed with exception: {result}")
continue
product_id, product_result = result
training_results[product_id] = product_result
logger.info(f"Throttled parallel training completed: {len(training_results)} products processed")
return training_results
async def _create_model_record(self,
@@ -655,7 +730,3 @@ class EnhancedBakeryMLTrainer:
except Exception as e:
logger.error("Enhanced model evaluation failed", error=str(e))
raise
# Legacy compatibility alias
BakeryMLTrainer = EnhancedBakeryMLTrainer