Fix new services implementation 7
This commit is contained in:
270
docs/FRONTEND.md
270
docs/FRONTEND.md
@@ -0,0 +1,270 @@
|
||||
🎨 Frontend Design Recommendations for PanIA
|
||||
|
||||
1. MODERN UX/UI PRINCIPLES (2024-2025)
|
||||
|
||||
🎯 User-Centered Design Philosophy
|
||||
|
||||
- Jobs-to-be-Done Framework: Organize around what users need to
|
||||
accomplish, not features
|
||||
- Progressive Disclosure: Show only what's needed when it's needed
|
||||
- Contextual Intelligence: AI-powered interfaces that adapt to user
|
||||
behavior and business context
|
||||
- Micro-Moment Design: Optimize for quick, task-focused interactions
|
||||
|
||||
🏗️ Information Architecture Principles
|
||||
|
||||
- Hub-and-Spoke Model: Central dashboard with specialized workspaces
|
||||
- Layered Navigation: Primary → Secondary → Contextual navigation
|
||||
levels
|
||||
- Cross-Module Integration: Seamless data flow between related
|
||||
functions
|
||||
- Predictive Navigation: Surface relevant actions before users need
|
||||
them
|
||||
|
||||
2. RECOMMENDED NAVIGATION STRUCTURE
|
||||
|
||||
🎛️ Primary Navigation (Top Level)
|
||||
|
||||
🏠 Dashboard 🥖 Operations 📊 Analytics ⚙️ Settings
|
||||
|
||||
🔗 Secondary Navigation (Operations Hub)
|
||||
|
||||
Operations/
|
||||
├── 📦 Production
|
||||
│ ├── Schedule
|
||||
│ ├── Active Batches
|
||||
│ └── Equipment
|
||||
├── 📋 Orders
|
||||
│ ├── Incoming
|
||||
│ ├── In Progress
|
||||
│ └── Supplier Orders
|
||||
├── 🏪 Inventory
|
||||
│ ├── Stock Levels
|
||||
│ ├── Movements
|
||||
│ └── Alerts
|
||||
├── 🛒 Sales
|
||||
│ ├── Daily Sales
|
||||
│ ├── Customer Orders
|
||||
│ └── POS Integration
|
||||
└── 📖 Recipes
|
||||
├── Active Recipes
|
||||
├── Development
|
||||
└── Costing
|
||||
|
||||
📈 Analytics Hub
|
||||
|
||||
Analytics/
|
||||
├── 🔮 Forecasting
|
||||
├── 📊 Sales Analytics
|
||||
├── 📈 Production Reports
|
||||
├── 💰 Financial Reports
|
||||
├── 🎯 Performance KPIs
|
||||
└── 🤖 AI Insights
|
||||
|
||||
3. MODERN UI DESIGN PATTERNS
|
||||
|
||||
🎨 Visual Design System
|
||||
|
||||
- Neumorphism + Glassmorphism: Subtle depth with transparency effects
|
||||
- Adaptive Color System: Dynamic themes based on time of day/business
|
||||
hours
|
||||
- Micro-Interactions: Delightful feedback for all user actions
|
||||
- Data Visualization: Interactive charts with drill-down capabilities
|
||||
|
||||
📱 Layout Patterns
|
||||
|
||||
- Compound Layout: Dashboard cards that expand into detailed views
|
||||
- Progressive Web App: Offline-first design with sync indicators
|
||||
- Responsive Grid: CSS Grid + Flexbox for complex layouts
|
||||
- Floating Action Buttons: Quick access to primary actions
|
||||
|
||||
🎯 Interaction Patterns
|
||||
|
||||
- Command Palette: Universal search + actions (Cmd+K)
|
||||
- Contextual Panels: Side panels for related information
|
||||
- Smart Defaults: AI-powered form pre-filling
|
||||
- Undo/Redo System: Confidence-building interaction safety
|
||||
|
||||
4. PAGE ORGANIZATION STRATEGY
|
||||
|
||||
🏠 Dashboard Design
|
||||
|
||||
┌─────────────────────────────────────────────────┐
|
||||
│ Today's Overview AI Recommendations │
|
||||
├─────────────────────────────────────────────────┤
|
||||
│ Critical Alerts Weather Impact │
|
||||
├─────────────────────────────────────────────────┤
|
||||
│ Production Status Sales Performance │
|
||||
├─────────────────────────────────────────────────┤
|
||||
│ Quick Actions Recent Activity │
|
||||
└─────────────────────────────────────────────────┘
|
||||
|
||||
📊 Analytics Design
|
||||
|
||||
- Unified Reports Hub: Replace "Informes" with comprehensive analytics
|
||||
- Interactive Dashboards: Drag-and-drop widget customization
|
||||
- Export Everything: PDF, Excel, API endpoints for all reports
|
||||
- AI Narrative: Natural language insights explaining the data
|
||||
|
||||
⚡ Operational Pages
|
||||
|
||||
- Split Complex Pages: Break inventory/production into focused
|
||||
sub-pages
|
||||
- Context-Aware Sidebars: Related information always accessible
|
||||
- Bulk Operations: Multi-select with batch actions
|
||||
- Real-Time Sync: Live updates with optimistic UI
|
||||
|
||||
5. COMPONENT ARCHITECTURE
|
||||
|
||||
🧱 Design System Components
|
||||
|
||||
// Foundational Components
|
||||
Button, Input, Card, Modal, Table, Form
|
||||
|
||||
// Composite Components
|
||||
DataTable, FilterPanel, SearchBox, ActionBar
|
||||
|
||||
// Domain Components
|
||||
ProductCard, OrderSummary, InventoryAlert, RecipeViewer
|
||||
|
||||
// Layout Components
|
||||
PageHeader, Sidebar, NavigationBar, BreadcrumbTrail
|
||||
|
||||
// Feedback Components
|
||||
LoadingState, EmptyState, ErrorBoundary, SuccessMessage
|
||||
|
||||
🎨 Visual Hierarchy
|
||||
|
||||
- Typography Scale: Clear heading hierarchy with proper contrast
|
||||
- Color System: Semantic colors (success, warning, error, info)
|
||||
- Spacing System: Consistent 4px/8px grid system
|
||||
- Shadow System: Layered depth for component elevation
|
||||
|
||||
6. USER EXPERIENCE ENHANCEMENTS
|
||||
|
||||
🚀 Performance Optimizations
|
||||
|
||||
- Skeleton Loading: Immediate visual feedback during data loading
|
||||
- Virtual Scrolling: Handle large datasets efficiently
|
||||
- Optimistic Updates: Immediate UI response with error handling
|
||||
- Background Sync: Offline-first with automatic sync
|
||||
|
||||
♿ Accessibility Standards
|
||||
|
||||
- WCAG 2.2 AA Compliance: Screen reader support, keyboard navigation
|
||||
- Focus Management: Clear focus indicators and logical tab order
|
||||
- Color Blind Support: Pattern + color coding for data visualization
|
||||
- High Contrast Mode: Automatic detection and support
|
||||
|
||||
🎯 Personalization Features
|
||||
|
||||
- Customizable Dashboards: User-configurable widgets and layouts
|
||||
- Saved Views: Bookmarkable filtered states
|
||||
- Notification Preferences: Granular control over alerts
|
||||
- Theme Preferences: Light/dark/auto modes
|
||||
|
||||
7. MOBILE-FIRST CONSIDERATIONS
|
||||
|
||||
📱 Progressive Web App Features
|
||||
|
||||
- Offline Mode: Critical functions work without internet
|
||||
- Push Notifications: Order alerts, stock alerts, production updates
|
||||
- Home Screen Install: Native app-like experience
|
||||
- Background Sync: Data synchronization when connection returns
|
||||
|
||||
🖱️ Touch-Optimized Interactions
|
||||
|
||||
- 44px Touch Targets: Minimum size for all interactive elements
|
||||
- Swipe Gestures: Navigate between related screens
|
||||
- Pull-to-Refresh: Intuitive data refresh mechanism
|
||||
- Bottom Navigation: Thumb-friendly primary navigation on mobile
|
||||
|
||||
8. AI-POWERED UX ENHANCEMENTS
|
||||
|
||||
🤖 Intelligent Features
|
||||
|
||||
- Predictive Search: Suggestions based on context and history
|
||||
- Smart Notifications: Context-aware alerts with actionable insights
|
||||
- Automated Workflows: AI-suggested process optimizations
|
||||
- Anomaly Detection: Visual highlights for unusual patterns
|
||||
|
||||
💬 Conversational Interface
|
||||
|
||||
- AI Assistant: Natural language queries for data and actions
|
||||
- Voice Commands: Hands-free operation for production environments
|
||||
- Smart Help: Context-aware documentation and tips
|
||||
- Guided Tours: Adaptive onboarding based on user role
|
||||
|
||||
9. TECHNICAL IMPLEMENTATION RECOMMENDATIONS
|
||||
|
||||
🏗️ Architecture Patterns
|
||||
|
||||
- React Router: Replace custom navigation with URL-based routing
|
||||
- Zustand/Redux Toolkit: Predictable state management
|
||||
- React Query: Server state management with caching
|
||||
- Framer Motion: Smooth animations and transitions
|
||||
|
||||
🎨 Styling Strategy
|
||||
|
||||
- CSS-in-JS: Styled-components or Emotion for dynamic theming
|
||||
- Design Tokens: Centralized design system values
|
||||
- Responsive Utilities: Mobile-first responsive design
|
||||
- Component Variants: Consistent styling patterns
|
||||
|
||||
10. IMPLEMENTATION PRIORITY
|
||||
|
||||
Phase 1: Foundation (Weeks 1-2)
|
||||
|
||||
1. Implement React Router for proper URL navigation
|
||||
2. Create unified design system and component library
|
||||
3. Redesign primary navigation structure
|
||||
4. Add global search and command palette
|
||||
|
||||
Phase 2: Page Reorganization (Weeks 3-4)
|
||||
|
||||
1. Split complex pages into focused sub-pages
|
||||
2. Create unified Analytics hub (replace "Informes")
|
||||
3. Implement contextual sidebars and panels
|
||||
4. Add breadcrumb navigation and page states
|
||||
|
||||
Phase 3: Enhancement (Weeks 5-6)
|
||||
|
||||
1. Add AI-powered features and smart defaults
|
||||
2. Implement offline-first PWA capabilities
|
||||
3. Add customizable dashboards and saved views
|
||||
4. Complete accessibility audit and improvements
|
||||
|
||||
This comprehensive redesign will transform PanIA into a modern,
|
||||
intuitive, and powerful bakery management system that follows the
|
||||
latest UX/UI best practices while maintaining its AI-first approach.
|
||||
|
||||
Update Todos
|
||||
⎿ ☒ Analyze current frontend structure and provide UX/UI design
|
||||
recommendations
|
||||
|
||||
⏺ The comprehensive analysis reveals that while PanIA has excellent
|
||||
functionality and AI integration, it needs significant UX/UI
|
||||
improvements. The main recommendations focus on:
|
||||
|
||||
🎯 Key Priority Areas:
|
||||
1. Navigation Restructure: Move from custom state navigation to React
|
||||
Router with proper URL structure
|
||||
2. Information Architecture: Organize around user workflows
|
||||
(Hub-and-Spoke model)
|
||||
3. Page Simplification: Break complex pages into focused, task-oriented
|
||||
views
|
||||
4. Unified Analytics: Replace scattered reports with a cohesive
|
||||
Analytics hub
|
||||
5. Modern UI Patterns: Implement 2024-2025 design standards with
|
||||
AI-powered enhancements
|
||||
|
||||
🚀 Immediate Next Steps:
|
||||
- Replace "Informes" with a proper Analytics hub
|
||||
- Implement React Router for deep linking
|
||||
- Create a unified design system
|
||||
- Add global search functionality
|
||||
- Split overly complex pages into manageable views
|
||||
|
||||
Would you like me to start implementing any specific part of these
|
||||
recommendations, such as the navigation restructure or the unified
|
||||
Analytics hub?
|
||||
@@ -1,209 +0,0 @@
|
||||
# ✅ AI-Powered Onboarding Implementation Checklist
|
||||
|
||||
## Backend Implementation
|
||||
|
||||
### Sales Service ✅
|
||||
- [x] `app/api/onboarding.py` - Complete 3-step API endpoints
|
||||
- [x] `app/services/onboarding_import_service.py` - Full automation workflow
|
||||
- [x] `app/services/inventory_client.py` - Enhanced with AI integration
|
||||
- [x] Router registration in `main.py`
|
||||
- [x] Import handling and error management
|
||||
- [x] Business model analysis integration
|
||||
|
||||
### Inventory Service ✅
|
||||
- [x] `app/api/classification.py` - AI classification endpoints
|
||||
- [x] `app/services/product_classifier.py` - 300+ product classification engine
|
||||
- [x] Router registration in `main.py`
|
||||
- [x] Enhanced inventory models for dual product types
|
||||
- [x] Confidence scoring and business model detection
|
||||
- [x] Fallback suggestion generation
|
||||
|
||||
### Database Updates ✅
|
||||
- [x] Inventory service models support both ingredients and finished products
|
||||
- [x] Sales service models reference inventory products via UUID
|
||||
- [x] Migration scripts for backward compatibility removal
|
||||
- [x] Product type enums and category classifications
|
||||
|
||||
## Frontend Implementation
|
||||
|
||||
### Core Components ✅
|
||||
- [x] `SmartHistoricalDataImport.tsx` - Complete 6-phase workflow component
|
||||
- [x] Enhanced `OnboardingPage.tsx` - Smart/traditional toggle integration
|
||||
- [x] `onboarding.service.ts` - Full API integration for automation
|
||||
|
||||
### User Experience ✅
|
||||
- [x] Progressive enhancement (smart-first, traditional fallback)
|
||||
- [x] Visual feedback and progress indicators
|
||||
- [x] Confidence scoring with color-coded suggestions
|
||||
- [x] Interactive approval/rejection interface
|
||||
- [x] Business model insights and recommendations
|
||||
- [x] Mobile-responsive design
|
||||
|
||||
### Navigation & Flow ✅
|
||||
- [x] Conditional navigation (hidden during smart import)
|
||||
- [x] Seamless mode switching
|
||||
- [x] Error handling with fallback suggestions
|
||||
- [x] Completion celebrations and success indicators
|
||||
|
||||
## API Integration
|
||||
|
||||
### Sales Service Endpoints ✅
|
||||
- [x] `POST /api/v1/tenants/{tenant_id}/onboarding/analyze`
|
||||
- [x] `POST /api/v1/tenants/{tenant_id}/onboarding/create-inventory`
|
||||
- [x] `POST /api/v1/tenants/{tenant_id}/onboarding/import-sales`
|
||||
- [x] `GET /api/v1/tenants/{tenant_id}/onboarding/business-model-guide`
|
||||
|
||||
### Inventory Service Endpoints ✅
|
||||
- [x] `POST /api/v1/tenants/{tenant_id}/inventory/classify-product`
|
||||
- [x] `POST /api/v1/tenants/{tenant_id}/inventory/classify-products-batch`
|
||||
|
||||
### Frontend API Client ✅
|
||||
- [x] Type definitions for all new interfaces
|
||||
- [x] Service methods for onboarding automation
|
||||
- [x] Error handling and response transformation
|
||||
- [x] File upload handling with FormData
|
||||
|
||||
## AI Classification Engine
|
||||
|
||||
### Product Categories ✅
|
||||
- [x] 8 ingredient categories with 200+ patterns
|
||||
- [x] 8 finished product categories with 100+ patterns
|
||||
- [x] Seasonal product detection
|
||||
- [x] Storage requirement classification
|
||||
- [x] Unit of measure suggestions
|
||||
|
||||
### Business Intelligence ✅
|
||||
- [x] Production bakery detection (≥70% ingredients)
|
||||
- [x] Retail bakery detection (≤30% ingredients)
|
||||
- [x] Hybrid bakery detection (30-70% ingredients)
|
||||
- [x] Confidence scoring algorithm
|
||||
- [x] Personalized recommendations per model
|
||||
|
||||
### Classification Features ✅
|
||||
- [x] Multi-language support (Spanish/English)
|
||||
- [x] Fuzzy matching with confidence scoring
|
||||
- [x] Supplier suggestion hints
|
||||
- [x] Shelf life estimation
|
||||
- [x] Storage requirement detection
|
||||
|
||||
## Error Handling & Resilience
|
||||
|
||||
### File Processing ✅
|
||||
- [x] Multiple encoding support (UTF-8, Latin-1, CP1252)
|
||||
- [x] Format validation (CSV, Excel, JSON)
|
||||
- [x] Size limits (10MB) with clear error messages
|
||||
- [x] Structure validation with missing column detection
|
||||
|
||||
### Graceful Degradation ✅
|
||||
- [x] AI classification failures → fallback suggestions
|
||||
- [x] Network issues → traditional import mode
|
||||
- [x] Validation errors → contextual help and smart import suggestions
|
||||
- [x] Low confidence → manual review prompts
|
||||
|
||||
### Data Integrity ✅
|
||||
- [x] Atomic operations for inventory creation
|
||||
- [x] Transaction rollback on failures
|
||||
- [x] Duplicate product name validation
|
||||
- [x] UUID-based product referencing
|
||||
|
||||
## Testing & Quality
|
||||
|
||||
### Code Quality ✅
|
||||
- [x] TypeScript strict mode compliance
|
||||
- [x] ESLint warnings resolved
|
||||
- [x] Python type hints where applicable
|
||||
- [x] Consistent code structure across services
|
||||
|
||||
### Integration Points ✅
|
||||
- [x] Sales ↔ Inventory service communication
|
||||
- [x] Frontend ↔ Backend API integration
|
||||
- [x] Database relationship integrity
|
||||
- [x] Error propagation and handling
|
||||
|
||||
## Documentation
|
||||
|
||||
### Technical Documentation ✅
|
||||
- [x] Complete implementation guide (`ONBOARDING_AUTOMATION_IMPLEMENTATION.md`)
|
||||
- [x] API endpoint documentation
|
||||
- [x] Component usage examples
|
||||
- [x] Architecture overview diagrams
|
||||
|
||||
### User Experience Documentation ✅
|
||||
- [x] Three-phase workflow explanation
|
||||
- [x] Business model intelligence description
|
||||
- [x] File format requirements and examples
|
||||
- [x] Troubleshooting guidance
|
||||
|
||||
## Performance & Scalability
|
||||
|
||||
### Optimization ✅
|
||||
- [x] Async processing for AI classification
|
||||
- [x] Batch operations for multiple products
|
||||
- [x] Lazy loading for frontend components
|
||||
- [x] Progressive file processing
|
||||
|
||||
### Scalability ✅
|
||||
- [x] Stateless service design
|
||||
- [x] Database indexing strategy
|
||||
- [x] Configurable confidence thresholds
|
||||
- [x] Feature flag preparation
|
||||
|
||||
## Security & Compliance
|
||||
|
||||
### Data Protection ✅
|
||||
- [x] Tenant isolation enforced
|
||||
- [x] File upload size limits
|
||||
- [x] Input validation and sanitization
|
||||
- [x] Secure temporary file handling
|
||||
|
||||
### Authentication & Authorization ✅
|
||||
- [x] JWT token validation
|
||||
- [x] Tenant access verification
|
||||
- [x] User context propagation
|
||||
- [x] API endpoint protection
|
||||
|
||||
## Deployment Readiness
|
||||
|
||||
### Configuration ✅
|
||||
- [x] Environment variable support
|
||||
- [x] Feature toggle infrastructure
|
||||
- [x] Service discovery compatibility
|
||||
- [x] Database migration scripts
|
||||
|
||||
### Monitoring ✅
|
||||
- [x] Structured logging with context
|
||||
- [x] Error tracking and metrics
|
||||
- [x] Performance monitoring hooks
|
||||
- [x] Health check endpoints
|
||||
|
||||
## Success Metrics
|
||||
|
||||
### Quantitative KPIs ✅
|
||||
- [x] Onboarding time reduction tracking (target: <10 minutes)
|
||||
- [x] Completion rate monitoring (target: >95%)
|
||||
- [x] AI classification accuracy (target: >90%)
|
||||
- [x] User satisfaction scoring (target: NPS >8.5)
|
||||
|
||||
### Qualitative Indicators ✅
|
||||
- [x] Support ticket reduction tracking
|
||||
- [x] User feedback collection mechanisms
|
||||
- [x] Feature adoption analytics
|
||||
- [x] Business growth correlation
|
||||
|
||||
---
|
||||
|
||||
## ✅ IMPLEMENTATION STATUS: COMPLETE
|
||||
|
||||
**Total Tasks Completed**: 73/73
|
||||
**Implementation Quality**: Production-Ready
|
||||
**Test Coverage**: Component & Integration Ready
|
||||
**Documentation**: Complete
|
||||
**Deployment Readiness**: ✅ Ready for staging/production
|
||||
|
||||
### Next Steps (Post-Implementation):
|
||||
1. **Testing**: Run full integration tests in staging environment
|
||||
2. **Beta Rollout**: Deploy to select bakery partners for validation
|
||||
3. **Performance Monitoring**: Monitor real-world usage patterns
|
||||
4. **Continuous Improvement**: Iterate based on user feedback and analytics
|
||||
|
||||
**🎉 The AI-powered onboarding automation system is fully implemented and ready for deployment!**
|
||||
@@ -1,220 +0,0 @@
|
||||
# Traffic Data Storage for Re-Training
|
||||
|
||||
## Overview
|
||||
|
||||
This document describes the enhanced traffic data storage system implemented to ensure that fetched traffic data is stored in the database for future use in model re-training.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Database Schema
|
||||
|
||||
The `traffic_data` table stores all traffic data with the following schema:
|
||||
|
||||
```sql
|
||||
CREATE TABLE traffic_data (
|
||||
id UUID PRIMARY KEY,
|
||||
location_id VARCHAR(100) NOT NULL, -- Format: "lat,lon" (e.g., "40.4168,-3.7038")
|
||||
date TIMESTAMP WITH TIME ZONE NOT NULL,
|
||||
traffic_volume INTEGER,
|
||||
pedestrian_count INTEGER,
|
||||
congestion_level VARCHAR(20), -- "low", "medium", "high", "blocked"
|
||||
average_speed FLOAT,
|
||||
source VARCHAR(50) NOT NULL DEFAULT 'madrid_opendata',
|
||||
raw_data TEXT, -- JSON string of original data
|
||||
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
|
||||
updated_at TIMESTAMP WITH TIME ZONE NOT NULL
|
||||
);
|
||||
|
||||
-- Indexes for efficient querying
|
||||
CREATE INDEX idx_traffic_location_date ON traffic_data(location_id, date);
|
||||
CREATE INDEX idx_traffic_date_range ON traffic_data(date);
|
||||
```
|
||||
|
||||
### Key Components
|
||||
|
||||
#### 1. Enhanced TrafficService (`services/data/app/services/traffic_service.py`)
|
||||
|
||||
**New Methods:**
|
||||
- `_store_traffic_data_batch()`: Efficiently stores multiple traffic records with duplicate detection
|
||||
- `_validate_traffic_data()`: Validates traffic data before storage
|
||||
- `get_stored_traffic_for_training()`: Retrieves stored traffic data specifically for training
|
||||
|
||||
**Enhanced Methods:**
|
||||
- `get_historical_traffic()`: Now automatically stores fetched data for future re-training
|
||||
|
||||
#### 2. Training Data Orchestrator (`services/training/app/services/training_orchestrator.py`)
|
||||
|
||||
**New Methods:**
|
||||
- `retrieve_stored_traffic_for_retraining()`: Retrieves previously stored traffic data for re-training
|
||||
- `_log_traffic_data_storage()`: Logs traffic data storage for audit purposes
|
||||
|
||||
**Enhanced Methods:**
|
||||
- `_collect_traffic_data_with_timeout()`: Now includes storage logging and validation
|
||||
|
||||
#### 3. Data Service Client (`shared/clients/data_client.py`)
|
||||
|
||||
**New Methods:**
|
||||
- `get_stored_traffic_data_for_training()`: Dedicated method for retrieving stored training data
|
||||
|
||||
#### 4. API Endpoints (`services/data/app/api/traffic.py`)
|
||||
|
||||
**New Endpoint:**
|
||||
- `POST /tenants/{tenant_id}/traffic/stored`: Retrieves stored traffic data for training purposes
|
||||
|
||||
## Data Flow
|
||||
|
||||
### Initial Training
|
||||
1. Training orchestrator requests traffic data
|
||||
2. Data service checks database first
|
||||
3. If not found, fetches from Madrid Open Data API
|
||||
4. **Data is automatically stored in database**
|
||||
5. Returns data to training orchestrator
|
||||
6. Training completes using fetched data
|
||||
|
||||
### Re-Training
|
||||
1. Training orchestrator requests stored traffic data
|
||||
2. Data service queries database using location and date range
|
||||
3. Returns stored data without making API calls
|
||||
4. Training completes using stored data
|
||||
|
||||
## Storage Logic
|
||||
|
||||
### Duplicate Prevention
|
||||
- Before storing, the system checks for existing records with the same location and date
|
||||
- Only new records are stored to avoid database bloat
|
||||
|
||||
### Batch Processing
|
||||
- Traffic data is stored in batches of 100 records for efficiency
|
||||
- Each batch is committed separately to handle large datasets
|
||||
|
||||
### Data Validation
|
||||
- Traffic volume: 0-10,000 vehicles per hour
|
||||
- Pedestrian count: 0-10,000 people per hour
|
||||
- Average speed: 0-200 km/h
|
||||
- Congestion level: "low", "medium", "high", "blocked"
|
||||
|
||||
## Benefits
|
||||
|
||||
### 1. Improved Re-Training Performance
|
||||
- No need to re-fetch external API data
|
||||
- Faster training iterations
|
||||
- Reduced API rate limiting issues
|
||||
|
||||
### 2. Data Consistency
|
||||
- Same traffic data used across multiple training runs
|
||||
- Reproducible training results
|
||||
- Historical data preservation
|
||||
|
||||
### 3. Cost Efficiency
|
||||
- Reduced API calls to external services
|
||||
- Lower bandwidth usage
|
||||
- Better resource utilization
|
||||
|
||||
### 4. Offline Training
|
||||
- Training can proceed even if external APIs are unavailable
|
||||
- Increased system resilience
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Retrieving Stored Traffic Data
|
||||
```python
|
||||
from services.training.app.services.training_orchestrator import TrainingDataOrchestrator
|
||||
|
||||
orchestrator = TrainingDataOrchestrator()
|
||||
|
||||
# Get stored traffic data for re-training
|
||||
traffic_data = await orchestrator.retrieve_stored_traffic_for_retraining(
|
||||
bakery_location=(40.4168, -3.7038), # Madrid coordinates
|
||||
start_date=datetime(2024, 1, 1),
|
||||
end_date=datetime(2024, 12, 31),
|
||||
tenant_id="tenant-123"
|
||||
)
|
||||
```
|
||||
|
||||
### Checking Storage Status
|
||||
```python
|
||||
# The system automatically logs storage operations
|
||||
# Check logs for entries like:
|
||||
# "Traffic data stored for re-training" - indicates successful storage
|
||||
# "Retrieved X stored traffic records for training" - indicates successful retrieval
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
### Storage Metrics
|
||||
- Number of records stored per location
|
||||
- Storage success rate
|
||||
- Duplicate detection rate
|
||||
|
||||
### Retrieval Metrics
|
||||
- Query response time
|
||||
- Records retrieved per request
|
||||
- Re-training data availability
|
||||
|
||||
### Audit Trail
|
||||
All traffic data operations are logged with:
|
||||
- Location coordinates
|
||||
- Date ranges
|
||||
- Record counts
|
||||
- Storage/retrieval timestamps
|
||||
- Purpose (training/re-training)
|
||||
|
||||
## Migration
|
||||
|
||||
To enable traffic data storage on existing deployments:
|
||||
|
||||
1. **Run Database Migration:**
|
||||
```bash
|
||||
cd services/data
|
||||
alembic upgrade head
|
||||
```
|
||||
|
||||
2. **Restart Data Service:**
|
||||
```bash
|
||||
docker-compose restart data-service
|
||||
```
|
||||
|
||||
3. **Verify Storage:**
|
||||
- Check logs for "Traffic data stored for re-training" messages
|
||||
- Query database: `SELECT COUNT(*) FROM traffic_data;`
|
||||
|
||||
## Configuration
|
||||
|
||||
No additional configuration is required. The system automatically:
|
||||
- Detects when traffic data should be stored
|
||||
- Handles duplicate prevention
|
||||
- Manages database transactions
|
||||
- Provides fallback mechanisms
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**1. Storage Failures**
|
||||
- Check database connectivity
|
||||
- Verify table schema exists
|
||||
- Review validation errors in logs
|
||||
|
||||
**2. No Stored Data Available**
|
||||
- Ensure initial training has been completed
|
||||
- Check date ranges are within stored data period
|
||||
- Verify location coordinates match stored data
|
||||
|
||||
**3. Performance Issues**
|
||||
- Monitor database query performance
|
||||
- Check index usage
|
||||
- Consider data archival for old records
|
||||
|
||||
### Error Messages
|
||||
|
||||
- `"No stored traffic data found for re-training"`: Normal when no previous training has occurred
|
||||
- `"Failed to store traffic data batch"`: Database connectivity or validation issue
|
||||
- `"Invalid traffic data, skipping"`: Data validation failure - check raw API response
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
1. **Data Archival**: Automatic archival of old traffic data
|
||||
2. **Data Compression**: Compress raw_data field for storage efficiency
|
||||
3. **Regional Expansion**: Support for traffic data from other cities
|
||||
4. **Real-time Updates**: Continuous traffic data collection and storage
|
||||
5. **Analytics**: Traffic pattern analysis and reporting
|
||||
Reference in New Issue
Block a user