Improve AI logic
This commit is contained in:
@@ -141,6 +141,27 @@ class ForecastServiceClient(BaseServiceClient):
|
||||
}
|
||||
return await self.post("forecasting/operations/validate-predictions", params=params, tenant_id=tenant_id)
|
||||
|
||||
async def validate_forecasts(
|
||||
self,
|
||||
tenant_id: str,
|
||||
date: date
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Validate forecasts for a specific date against actual sales.
|
||||
Calculates MAPE, RMSE, MAE and identifies products with poor accuracy.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
date: Date to validate
|
||||
|
||||
Returns:
|
||||
Dict with overall metrics and poor accuracy products list
|
||||
"""
|
||||
params = {
|
||||
"validation_date": date.isoformat()
|
||||
}
|
||||
return await self.post("forecasting/operations/validate-forecasts", params=params, tenant_id=tenant_id)
|
||||
|
||||
async def get_forecast_statistics(
|
||||
self,
|
||||
tenant_id: str,
|
||||
@@ -179,10 +200,81 @@ class ForecastServiceClient(BaseServiceClient):
|
||||
|
||||
return await self.get("forecasting/analytics/predictions-performance", tenant_id=tenant_id, params=params)
|
||||
|
||||
# ================================================================
|
||||
# ML INSIGHTS: Dynamic Rules Generation
|
||||
# ================================================================
|
||||
|
||||
async def trigger_rules_generation(
|
||||
self,
|
||||
tenant_id: str,
|
||||
product_ids: Optional[List[str]] = None,
|
||||
lookback_days: int = 90,
|
||||
min_samples: int = 10
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Trigger dynamic business rules learning for demand forecasting.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
product_ids: Specific product IDs to analyze. If None, analyzes all products
|
||||
lookback_days: Days of historical data to analyze (30-365)
|
||||
min_samples: Minimum samples required for rule learning (5-100)
|
||||
|
||||
Returns:
|
||||
Dict with rules generation results including insights posted
|
||||
"""
|
||||
data = {
|
||||
"product_ids": product_ids,
|
||||
"lookback_days": lookback_days,
|
||||
"min_samples": min_samples
|
||||
}
|
||||
return await self.post("forecasting/ml/insights/generate-rules", data=data, tenant_id=tenant_id)
|
||||
|
||||
# ================================================================
|
||||
# Legacy/Compatibility Methods (deprecated)
|
||||
# ================================================================
|
||||
|
||||
async def generate_forecasts(
|
||||
self,
|
||||
tenant_id: str,
|
||||
forecast_days: int = 7,
|
||||
inventory_product_ids: Optional[List[str]] = None
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
COMPATIBILITY: Orchestrator-friendly method to generate forecasts
|
||||
|
||||
This method is called by the orchestrator service and generates batch forecasts
|
||||
for either specified products or all products.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant UUID
|
||||
forecast_days: Number of days to forecast (default 7)
|
||||
inventory_product_ids: Optional list of product IDs. If None, forecasts all products.
|
||||
|
||||
Returns:
|
||||
Dict with forecast results
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
# If no product IDs specified, let the backend handle it
|
||||
if not inventory_product_ids:
|
||||
# Call the batch operation endpoint to forecast all products
|
||||
# The forecasting service will handle fetching all products internally
|
||||
data = {
|
||||
"batch_name": f"orchestrator-batch-{datetime.now().strftime('%Y%m%d')}",
|
||||
"inventory_product_ids": [], # Empty list will trigger fetching all products
|
||||
"forecast_days": forecast_days
|
||||
}
|
||||
return await self.post("forecasting/operations/batch", data=data, tenant_id=tenant_id)
|
||||
|
||||
# Otherwise use the standard batch forecast
|
||||
return await self.generate_batch_forecast(
|
||||
tenant_id=tenant_id,
|
||||
inventory_product_ids=inventory_product_ids,
|
||||
forecast_date=datetime.now().date(),
|
||||
forecast_days=forecast_days
|
||||
)
|
||||
|
||||
async def create_forecast(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
Reference in New Issue
Block a user